Patents by Inventor Kuen-Ting Shiu

Kuen-Ting Shiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10014377
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second III-V semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward William Kiewra, Amlan Majumdar, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Patent number: 9984873
    Abstract: A method of forming a semiconducting material includes depositing a graded buffer on a substrate to form a graded layer of an indium (In) containing III-V material, the In containing III-V material being indium-gallium-arsenic (InGaAs) or indium-aluminum-arsenic (InAlAs) and comprising In in an increasing atomic gradient up to 35 atomic % (at. %) based on total atomic weight of InGa or InAl; and forming a layer of InGaAs on the graded layer, the layer of InGaAs comprising about 25 to about 100 at. % In based on total atomic weight of InGa.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 29, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Patent number: 9966735
    Abstract: III-V lasers integrated with silicon photonic circuits and methods for making the same include a three-layer semiconductor stack formed from III-V semiconductors on a substrate, where a middle layer has a lower bandgap than a top layer and a bottom layer; a mirror region monolithically formed at a first end of the stack, configured to reflect emitted light in the direction of the stack; and a waveguide region monolithically formed at a second end of the stack, configured to transmit emitted light.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: May 8, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Cheng-Wei Cheng, Frank R. Libsch, Tak H. Ning, Uzma Rana, Kuen-Ting Shiu
  • Publication number: 20180069376
    Abstract: A structure includes an optoelectronic device having a Group IV substrate (e.g., Si); a buffer layer (e.g. SiGe) disposed on the substrate and a first distributed Bragg reflector (DBR) disposed on the buffer layer. The first DBR contains alternating layers of doped Group IV materials (e.g., alternating layers of SiyGe(1-y), where 0.8<y<1, and SizGe(1-z), where 0.2<z<0.4) that are substantially transparent to a wavelength of interest. The structure further includes a strained layer of a Group III-V material over the first DBR and a second DBR over the strained layer. The second DBR contains alternating layers of electrically conductive oxides (e.g., ITO/AZO) that are substantially transparent to the wavelength of interest. Embodiments of VCSELs and photodetectors can be derived from the structure. The strained layer of Group III-V material can be, for example, a thin layer of In0.53Ga0.47As having a thickness in a range of about 2 nm to about 5 nm.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Cheng-Wei Cheng, Effendi Leobandung, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Publication number: 20180062353
    Abstract: A structure includes an optoelectronic device having a Group IV substrate (e.g., Si); a buffer layer (e.g. SiGe) disposed on the substrate and a first distributed Bragg reflector (DBR) disposed on the buffer layer. The first DBR contains alternating layers of doped Group IV materials (e.g., alternating layers of SiyGe(1-y), where 0.8<y<1, and SizGe(1-z), where 0.2<z<0.4) that are substantially transparent to a wavelength of interest. The structure further includes a strained layer of a Group III-V material over the first DBR and a second DBR over the strained layer. The second DBR contains alternating layers of electrically conductive oxides (e.g., ITO/AZO) that are substantially transparent to the wavelength of interest. Embodiments of VCSELs and photodetectors can be derived from the structure. The strained layer of Group III-V material can be, for example, a thin layer of In0.53Ga0.47As having a thickness in a range of about 2 nm to about 5 nm.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Cheng-Wei Cheng, Effendi Leobandung, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 9887264
    Abstract: A semiconductor structure includes a plurality of semiconductor fins located on a semiconductor substrate, in which each of the semiconductor fins comprises a sequential stack of a buffered layer including a III-V semiconductor material and a channel layer including a III-V semiconductor material. The semiconductor structure further includes a gap filler material surrounding the semiconductor fins and including a plurality of trenches therein. The released portions of the channel layers of the semiconductor fins located in the trenches constitute nanowire channels of the semiconductor structure, and opposing end portions of the channel layers of the semiconductor fins located outside of the trenches constitute a source region and a drain region of the semiconductor structure, respectively. In addition, the semiconductor structure further includes a plurality of gates structures located within the trenches that surround the nanowire channels in a gate all around configuration.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Szu Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Patent number: 9882021
    Abstract: A method of forming a semiconductor substrate including a type III-V semiconductor material directly on a dielectric material that includes forming a trench in a dielectric layer, and forming a via within the trench extending from a base of the trench to an exposed upper surface of an underlying semiconductor including substrate. A III-V semiconductor material is formed extending from the exposed upper surface of the semiconductor substrate filling at least a portion of the trench.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward W. Kiewra, Amlan Majumdar, Uzma Rana, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Patent number: 9864135
    Abstract: An electrical device that in one embodiment includes a first semiconductor device positioned on a first portion of a type IV semiconductor substrate, and an optoelectronic light emission device of type III-V semiconductor materials that is in electrical communication with the first semiconductor device. The optoelectronic light emission device is positioned adjacent to the first semiconductor device on the first portion of the type IV semiconductor substrate. A dielectric waveguide is present on a second portion of the type IV semiconductor substrate. An optoelectronic light detection device of type III-V semiconductor material is present on a third portion of the type IV semiconductor device. The dielectric waveguide is positioned between and aligned with the optoelectronic light detection device and optoelectronic light emission device to transmit a light signal from the optoelectronic light emission device to the optoelectronic light detection device.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 9865469
    Abstract: A method for performing epitaxial lift-off allowing reuse of a III-V substrate to grow III-V devices is presented. A sample is received comprising a growth substrate with a top surface, a sacrificial layer on the top surface, and a device layer on the sacrificial layer. This substrate is supported inside a container and the container is filled with a wet etchant such that the wet etchant progressively etches away the sacrificial layer and the device layer lifts away from the growth substrate. While filling the container with the wet etchant, the sample is supported in the container such that the top surface of the growth substrate is non-parallel with an uppermost surface of the wet etchant. Performed in this manner, the lift-off process requires little individual setup of the sample, and is capable of batch processing and high throughput.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Ning Li, Devendra K. Sadana, Leathen Shi, Kuen-Ting Shiu
  • Patent number: 9865769
    Abstract: A method of forming, and corresponding structure, of an LED device where an LED and the contacts for the device are formed on a surface of the substrate, and the substrate is spalled just below the surface of the substrate.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Stephen W. Bedell, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Publication number: 20180006180
    Abstract: A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: STEPHEN W. BEDELL, CHENG-WEI CHENG, JEEHWAN KIM, DEVENDRA K. SADANA, KUEN-TING SHIU, NORMA E. SOSA CORTES
  • Patent number: 9818901
    Abstract: A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Jeehwan Kim, Devendra K. Sadana, Kuen-Ting Shiu, Norma E. Sosa Cortes
  • Patent number: 9726819
    Abstract: An electrical device that includes a first semiconductor device positioned on a first portion of a substrate and a second semiconductor device positioned on a third portion of the substrate, wherein the first and third portions of the substrate are separated by a second portion of the substrate. An interlevel dielectric layer is present on the first, second and third portions of the substrate. The interlevel dielectric layer is present over the first and second semiconductor devices. An optical interconnect is positioned over the second portion of the semiconductor substrate. At least one material layer of the optical interconnect includes an epitaxial material that is in direct contact with a seed surface within the second portion of the substrate through a via extending through the least one interlevel dielectric layer.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 9704958
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second III-V semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward William Kiewra, Amlan Majumdar, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Publication number: 20170179237
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20170179238
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20170170270
    Abstract: A semiconductor structure includes a plurality of semiconductor fins located on a semiconductor substrate, in which each of the semiconductor fins comprises a sequential stack of a buffered layer including a III-V semiconductor material and a channel layer including a III-V semiconductor material. The semiconductor structure further includes a gap filler material surrounding the semiconductor fins and including a plurality of trenches therein. The released portions of the channel layers of the semiconductor fins located in the trenches constitute nanowire channels of the semiconductor structure, and opposing end portions of the channel layers of the semiconductor fins located outside of the trenches constitute a source region and a drain region of the semiconductor structure, respectively. In addition, the semiconductor structure further includes a plurality of gates structures located within the trenches that surround the nanowire channels in a gate all around configuration.
    Type: Application
    Filed: August 24, 2016
    Publication date: June 15, 2017
    Inventors: Jack O. Chu, Szu Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Publication number: 20170162387
    Abstract: A method of forming a semiconductor device is provided. The method includes depositing an aluminum-base interlayer on a silicon substrate, the aluminum-base interlayer having a thickness of less than about 100 nanometers; and growing a III-V compound material on the aluminum-base interlayer. The aluminum-base interlayer deposited directly on silicon allows for continuous and planar growth of III-V compound materials on the interlayer, which facilitates the manufacture of high quality electronic devices.
    Type: Application
    Filed: June 9, 2016
    Publication date: June 8, 2017
    Inventors: CHENG-WEI CHENG, SANGHOON LEE, KUEN-TING SHIU
  • Publication number: 20170154783
    Abstract: A method for performing epitaxial lift-off allowing reuse of a III-V substrate to grow III-V devices is presented. A sample is received comprising a growth substrate with a top surface, a sacrificial layer on the top surface, and a device layer on the sacrificial layer. This substrate is supported inside a container and the container is filled with a wet etchant such that the wet etchant progressively etches away the sacrificial layer and the device layer lifts away from the growth substrate. While filling the container with the wet etchant, the sample is supported in the container such that the top surface of the growth substrate is non-parallel with an uppermost surface of the wet etchant. Performed in this manner, the lift-off process requires little individual setup of the sample, and is capable of batch processing and high throughput.
    Type: Application
    Filed: February 13, 2017
    Publication date: June 1, 2017
    Inventors: Cheng-Wei Cheng, Ning Li, Devendra K. Sadana, Leathen Shi, Kuen-Ting Shiu
  • Patent number: 9660116
    Abstract: A photovoltaic device and method include depositing a metal film on a substrate layer. The metal film is annealed to form islands of the metal film on the substrate layer. The substrate layer is etched using the islands as an etch mask to form pillars in the substrate layer.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Jeehwan Kim, Jae-Woong Nah, Devendra K. Sadana, Kuen-Ting Shiu