Patents by Inventor Leo Mathew

Leo Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070158703
    Abstract: An electronic device can include a gated diode, wherein the gated diode includes a junction diode structure including a junction. A first conductive member spaced apart from and adjacent to the junction can be connected to a first signal line. A second conductive member, spaced apart from and adjacent to the junction, can be both electrically connected to a second signal line and electrically insulated from the first conductive member. The junction diode structure can include a p-n or a p-i-n junction. A process for forming the electronic device is also described.
    Type: Application
    Filed: January 6, 2006
    Publication date: July 12, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Michael Khazhinsky
  • Patent number: 7241695
    Abstract: A semiconductor device includes a plurality of pillars formed from a conductive material. The pillars are formed by using a plurality of nanocrystals as a hardmask for patterning the conductive material. A thickness of the conductive material determines the height of the pillars. Likewise, a width of the pillar is determined by the diameter of a nanocrystal. In one embodiment, the pillars are formed from polysilicon and function as the charge storage region of a non-volatile memory cell having good charge retention and low voltage operation. In another embodiment, the pillars are formed from a metal and function as a plate electrode for a metal-insulator-metal (MIM) capacitor having an increased capacitance without increasing the surface area of an integrated circuit.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: July 10, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rajesh A. Rao, Ramachandran Muralidhar
  • Patent number: 7238601
    Abstract: A conductive spacer (36, 122) in a sidewall region (30, 16) of a device (10, 100) is formed. The conductive spacer is formed adjacent sidewalls of the current electrode regions (18, 12). In one embodiment, a thin silicide layer (34) is formed at a top surface and a sidewall of the current electrode regions followed by an anisotropic etch of the conductive layer (32) used to form the thin silicide layer. The anisotropic etch of the conductive layer results in conductive spacers (36) adjacent sidewalls of the current electrode regions where these conductive spacers may allow for reduced contact resistance thus improving device performance. The conductive spacers may be formed adjacent current electrode regions of a MOSFET device, FINFET device, bipolar device, or Shotky-Barrier device.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 3, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Varughese Mathew, Leo Mathew
  • Publication number: 20070126076
    Abstract: A semiconductor optical device includes an insulating layer, a photoelectric region formed on the insulating layer, a first electrode having a first conductivity type formed on the insulating layer and contacting a first side of the photoelectric region, and a second electrode having a second conductivity type formed on the insulating layer and contacting a second side of the photoelectric region. The photoelectric region may include nanoclusters or porous silicon such that the device operates as a light emitting device. Alternatively, the photoelectric region may include an intrinsic semiconductor material such that the device operates as a light sensing device. The semiconductor optical device may be further characterized as a vertical optical device. In one embodiment, different types of optical devices, including light emitting and light sensing devices, may be integrated together.
    Type: Application
    Filed: August 17, 2006
    Publication date: June 7, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Yang Du, Voon-Yew Thean
  • Patent number: 7215268
    Abstract: An analog to digital converter including a plurality of multiple independent gate field effect transistors (MIGFET) that provide a plurality of digital output signals, is provided. Each MIGFET of the plurality of MIGFETs may have first gate for receiving an analog signal, a second gate for being biased, and a current electrode for providing a digital output signal from among the plurality of the digital output signals. Each MIGFET of the plurality of MIGFETs may have a combination of body width, channel length that is unique among the plurality of MIGFETs to result in a threshold voltage that is unique among the plurality of MIGFETs. A digital to analog converter including a plurality of MIGFETs is also provided.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 8, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohamed S. Moosa, Sriram S. Kalpat, Leo Mathew
  • Publication number: 20070093010
    Abstract: A method for creating an inverse T field effect transistor is provided. The method includes creating a horizontal active region and a vertical active region on a substrate. The method further comprises forming a sidewall spacer on a first side of the vertical active region and a second side of the vertical active region. The method further includes removing a portion of the horizontal active region, which is not covered by the sidewall spacer. The method further includes removing the sidewall spacer. The method further includes forming a gate dielectric over at least a first part of the horizontal active region and at least a first part of the vertical active region. The method further includes forming a gate electrode over the gate dielectric. The method further includes forming a source region and a drain region over at least a second part of the horizontal active region and at least a second part of the vertical active region.
    Type: Application
    Filed: October 25, 2005
    Publication date: April 26, 2007
    Inventors: Leo Mathew, Rode Mora
  • Publication number: 20070093054
    Abstract: A method for making a semiconductor device is provided. The method includes forming a first transistor with a vertical active region and a horizontal active region extending on both sides of the vertical active region. The method further includes forming a second transistor with a vertical active region. The method further includes forming a third transistor with a vertical active region and a horizontal active region extending on only one side of the vertical active region.
    Type: Application
    Filed: October 25, 2005
    Publication date: April 26, 2007
    Inventors: Byoung Min, James Burnett, Leo Mathew
  • Publication number: 20070085153
    Abstract: A voltage controlled oscillator (VCO) has a plurality of series-connected inverters. Within each inverter a first transistor has a first current electrode coupled to a first power supply voltage terminal, a second current electrode, a first control electrode coupled to an output terminal of another inverter of the plurality of series-connected inverters, and a second control electrode for receiving a first bias signal. A second transistor has a first current electrode coupled to the second current electrode of the first transistor, a second current electrode coupled to a second power supply voltage terminal, and a first control electrode coupled to the first control electrode of the first transistor. The second control electrode of the first transistor of each inverter receives a same or separate analog control signal to adjust the threshold voltage of the first transistors thereof to affect frequency and phase of the VCO's signal.
    Type: Application
    Filed: October 14, 2005
    Publication date: April 19, 2007
    Inventors: Sriram Kalpat, Leo Mathew, Mohamed Moosa, Michael Sadd, Hector Sanchez
  • Publication number: 20070085721
    Abstract: An analog to digital converter including a plurality of multiple independent gate field effect transistors (MIGFET) that provide a plurality of digital output signals, is provided. Each MIGFET of the plurality of MIGFETs may have first gate for receiving an analog signal, a second gate for being biased, and a current electrode for providing a digital output signal from among the plurality of the digital output signals. Each MIGFET of the plurality of MIGFETs may have a combination of body width, channel length that is unique among the plurality of MIGFETs to result in a threshold voltage that is unique among the plurality of MIGFETs. A digital to analog converter including a plurality of MIGFETs is also provided.
    Type: Application
    Filed: October 14, 2005
    Publication date: April 19, 2007
    Inventors: Mohamed Moosa, Sriram Kalpat, Leo Mathew
  • Publication number: 20070082495
    Abstract: A semiconductor device includes a plurality of pillars formed from a conductive material. The pillars are formed by using a plurality of nanocrystals as a hardmask for patterning the conductive material. A thickness of the conductive material determines the height of the pillars. Likewise, a width of the pillar is determined by the diameter of a nanocrystal. In one embodiment, the pillars are formed from polysilicon and function as the charge storage region of a non-volatile memory cell having good charge retention and low voltage operation. In another embodiment, the pillars are formed from a metal and function as a plate electrode for a metal-insulator-metal (MIM) capacitor having an increased capacitance without increasing the surface area of an integrated circuit.
    Type: Application
    Filed: October 6, 2005
    Publication date: April 12, 2007
    Inventors: Leo Mathew, Rajesh Rao, Ramachandran Muralidhar
  • Publication number: 20070077743
    Abstract: A FinFET includes a plurality of semiconductor fins. Over a semiconductor layer, patterned features (e.g. of minimum photolithographic size and spacing) are formed. In one example of fin formation, a first set of sidewall spacers are formed adjacent to the sides of these patterned features. A second set of sidewall spacers of a different material are formed adjacent to the sides of the first set of sidewall spacers. The first set of sidewall spacers are removed leaving the second set of sidewall spacers spaced from the patterned features. Both the second set of sidewall spacers and the patterned features are used as a mask to an etch that leaves semiconductor fins patterned as per the second set of sidewall spacers and the patterned features. These resulting semiconductor fins, which have sub-lithographic spacings, are then used for channels of a FinFET transistor.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Rajesh Rao, Leo Mathew
  • Patent number: 7192876
    Abstract: A method of making a transistor with independent gate structures. The gate structures are each adjacent to sidewalls of a semiconductor structure. The method includes depositing at least one conformal layer that includes a layer of gate material over a semiconductor structure that includes the channel region. A planar layer is formed over the wafer. The planar layer has a top surface below the top surface of the rat least one conformal layer at a location over the substrate. The at least one conformal layers are etched to remove the gate material over the semiconductor structure.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: March 20, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Robert F. Steimle, Ramachandran Muralidhar
  • Publication number: 20070059911
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Application
    Filed: September 14, 2005
    Publication date: March 15, 2007
    Inventors: Dharmesh Jawarani, John Alvis, Michael Harrison, Leo Mathew, John Moore, Rode Mora
  • Publication number: 20060262469
    Abstract: A rail clamp circuit (100) includes first and second power supply voltage rails, a multiple independent gate field effect transistor (MIGFET) (128), and an ESD event detector circuit (138). The MIGFET (128) has a source/drain path coupled between the first (112) and second (114) power supply voltage rails, and first and second gates. The ESD event detector circuit (138) is coupled between the first (112) and second (114) power supply voltage rails, and has first and second output terminals respectively coupled to the first and second gates of the MIGFET. In response to an electrostatic discharge (ESD) event between the first (112) and second (114) power supply voltage rails, the ESD event detector circuit (138) provides a voltage to the second gate to lower an absolute threshold voltage of the MIGFET (128) while providing a voltage to the first gate above the absolute threshold voltage so lowered, thereby making the MIGFET (128) conductive with relatively high conductivity.
    Type: Application
    Filed: May 17, 2005
    Publication date: November 23, 2006
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Michael Khazhinsky, Leo Mathew
  • Publication number: 20060223335
    Abstract: A method for forming a semiconductor device including forming a semiconductor substrate; forming a gate electrode over the semiconductor substrate having a first side and a second side, and forming a gate dielectric under the gate electrode. The gate dielectric has a first area under the gate electrode and adjacent the first side of the gate electrode, a second area under the gate electrode and adjacent the second side of the gate electrode, and a third area under the gate electrode that is between the first area and the second area, wherein the first area is thinner than the second area, and the third area is thinner than the first area and is thinner than the second area.
    Type: Application
    Filed: March 29, 2005
    Publication date: October 5, 2006
    Inventors: Leo Mathew, Venkat Kolagunta, David Sing
  • Publication number: 20060220102
    Abstract: A non-volatile memory cell can include a substrate, an active region overlying the substrate, and a capacitor structure overlying the substrate. From a plan view, the capacitor structure surrounds the active region. In one embodiment, the non-volatile memory cell includes a floating gate electrode and a control gate electrode. The capacitor structure comprises a first capacitor portion, and the first capacitor portion comprises a first capacitor electrode and a second capacitor electrode. The first capacitor electrode is electrically connected to the floating gate electrode, and the second capacitor electrode is electrically connected to the control gate electrode. A process for forming the non-volatile memory cell can include forming an active region over a substrate, and forming a capacitor structure over the substrate, wherein from a plan view, the capacitor structure surrounds the active region.
    Type: Application
    Filed: March 18, 2005
    Publication date: October 5, 2006
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Ramachandran Muralidhar, Tab Stephens
  • Patent number: 7112832
    Abstract: A transistor (10) overlies a substrate (12) and has a plurality of overlying channels (72, 74, 76) that are formed in a stacked arrangement. A continuous gate (60) material surrounds each of the channels. Each of the channels is coupled to source and drain electrodes (S/D) to provide increased channel surface area in a same area that a single channel structure is conventionally implemented. A vertical channel dimension between two regions of the gate (60) are controlled by a growth process as opposed to lithographical or spacer formation techniques. The gate is adjacent all sides of the multiple overlying channels. Each channel is formed by growth from a common seed layer and the source and drain electrodes and the channels are formed of a substantially homogenous crystal lattice.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: September 26, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Leo Mathew
  • Patent number: 7112455
    Abstract: A semiconductor optical device includes an insulating layer, a photoelectric region formed on the insulating layer, a first electrode having a first conductivity type formed on the insulating layer and contacting a first side of the photoelectric region, and a second electrode having a second conductivity type formed on the insulating layer and contacting a second side of the photoelectric region. The photoelectric region may include nanoclusters or porous silicon such that the device operates as a light emitting device. Alternatively, the photoelectric region may include an intrinsic semiconductor material such that the device operates as a light sensing device. The semiconductor optical device may be further characterized as a vertical optical device. In one embodiment, different types of optical devices, including light emitting and light sensing devices, may be integrated together.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: September 26, 2006
    Assignee: Freescale Semiconductor, INC
    Inventors: Leo Mathew, Yang Du, Voon-Yew Thean
  • Patent number: 7109550
    Abstract: A semiconductor process and resulting transistor includes forming conductive extension spacers (146, 150) on either side of a gate electrode (116). Conductive extensions (146, 150) and gate electrode 116 are independently doped such that each of the structures may be n-type or p-type. Source/drain regions (156) are implanted laterally disposed on either side of the spacers (146, 150). Spacers (146, 150) may be independently doped by using a first angled implant (132) to dope first extension spacer (146) and a second angled implant (140) to dope second spacer (150). In one embodiment, the use of differently doped extension spacers (146, 150) eliminates the need for threshold adjustment channel implants.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: September 19, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Ramachandran Muralidhar
  • Publication number: 20060197140
    Abstract: A semiconductor device (151) is provided which comprises (a) a semiconductor substrate (103); (b) a fin (109) comprising a semiconductor material and being in electrical contact with the substrate; (c) a first floating gate (121) disposed on a first side of said fin; and (d) a control gate (107).
    Type: Application
    Filed: March 4, 2005
    Publication date: September 7, 2006
    Inventors: Ramachandran Muralidhar, Yang Du, Leo Mathew