Patents by Inventor Leonard Forbes

Leonard Forbes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8067794
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a HfSiON film on a substrate for use in a variety of electronic systems. The HfSiON film may be structured as one or more monolayers. Electrodes to a dielectric containing a HfSiON may be structured as one or more monolayers of titanium nitride, tantalum, or combinations of titanium nitride and tantalum.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: November 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110287601
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition, to form a dielectric layer of hafnium oxide doped with dysprosium and a method of fabricating such a combination produces a reliable structure for use in a variety of electronic devices. Forming the dielectric structure can include depositing hafnium oxide onto a substrate surface using precursor chemicals, followed by depositing dysprosium oxide onto the substrate using precursor chemicals, and repeating to form a thin laminate structure. A dielectric layer of dysprosium doped hafnium oxide may be used as the gate insulator of a MOSFET, as a capacitor dielectric in a DRAM, as a tunnel gate insulator in flash memories, or as a dielectric in NROM devices, because the high dielectric constant (high-k) of the film provides the functionality of a thinner silicon dioxide film, and because the reduced leakage current of the dielectric layer when the percentage of dysprosium doping is optimized improves memory function.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8062949
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment of the method, a pillar of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The pillar has a sublithographic thickness. A transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: November 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20110281407
    Abstract: One aspect of this disclosure relates to a method for forming a wafer with a strained semiconductor. In various embodiments of the method, a predetermined contour is formed in one of a semiconductor membrane and a substrate wafer. The semiconductor membrane is bonded to the substrate wafer and the predetermined contour is straightened to induce a predetermined strain in the semiconductor membrane. In various embodiments, a substrate wafer is flexed into a flexed position, a portion of the substrate wafer is bonded to a semiconductor layer when the substrate wafer is in the flexed position, and the substrate wafer is relaxed to induce a predetermined strain in the semiconductor layer. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: July 27, 2011
    Publication date: November 17, 2011
    Inventors: Leonard Forbes, Joseph E. Geusic, Salman Akram
  • Publication number: 20110272606
    Abstract: The present disclosure includes methods, devices, and systems for zinc oxide diodes for optical interconnections. One system includes a ZnO emitter confined within a circular geometry in an oxide layer on a silicon substrate. An optical waveguide is formed in the oxide layer and has an input coupled to the ZnO emitter. A detector is coupled to an output of the optical waveguide.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20110275163
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition (ALD), to form a zirconium substituted layer of barium titanium oxide (BaTiO3), produces a reliable ferroelectric structure for use in a variety of electronic devices such as a dielectric in nonvolatile random access memories (NVRAM), tunable dielectrics for multi layer ceramic capacitors (MLCC), infrared sensors and electro-optic modulators. In various embodiments, structures can be formed by depositing alternating layers of barium titanate and barium zirconate by ALD on a substrate surface using precursor chemicals, and repeating to form a sequentially deposited interleaved structure of desired thickness and composition. Such a layer may be used as the gate insulator of a MOSFET, or as a capacitor dielectric.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 10, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110260215
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a gallium lanthanide oxide film for use in a variety of electronic systems. The gallium lanthanide oxide film may be structured as one or more monolayers. The gallium lanthanide oxide film may be formed using atomic layer deposition.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110248353
    Abstract: In various method embodiments, a device region in a semiconductor substrate and isolation regions adjacent to the device region are defined. The device region has a channel region and the isolation regions have strain-inducing regions laterally adjacent to the channel regions. The channel region is strained with a desired strain for carrier mobility enhancement, where at least one ion type is implanted with an energy resulting in a peak implant in the strain-inducing regions of the isolation regions. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 13, 2011
    Inventors: Arup Bhattacharyya, Leonard Forbes, Paul A. Farrar
  • Publication number: 20110248265
    Abstract: The absorption coefficient of silicon for infrared light is very low and most solar cells absorb very little of the infrared light energy in sunlight. Very thick cells of crystalline silicon can be used to increase the absorption of infrared light energy but the cost of thick crystalline cells is prohibitive. The present invention relates to the use of less expensive microcrystalline silicon solar cells and the use of backside texturing with diffusive scattering to give a very large increase in the absorption of infrared light. Backside texturing comprises a plurality of cusped features providing diffusive scattering. Constructing the solar cell with a smooth front surface results in multiple internal reflections, light trapping, and a large enhancement of the absorption of infrared solar energy.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 13, 2011
    Inventor: Leonard Forbes
  • Patent number: 8026161
    Abstract: A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Also shown is a gate oxide with a conduction band offset in a range of approximately 5.16 eV to 7.8 eV. Gate oxides formed from elements such as zirconium are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which further inhibits reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: September 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110227138
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
    Type: Application
    Filed: September 17, 2010
    Publication date: September 22, 2011
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Leonard Forbes, Chintamani Palsule
  • Publication number: 20110220971
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 15, 2011
    Applicant: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Publication number: 20110223707
    Abstract: A backside illuminated image sensor includes a substrate, a backside passivation layer disposed on backside of the substrate, and a transparent conductive layer disposed on the backside passivation layer.
    Type: Application
    Filed: December 15, 2010
    Publication date: September 15, 2011
    Inventors: Jaroslav Hynecek, Leonard Forbes, Homayoon Haddad, Thomas Joy
  • Patent number: 8017988
    Abstract: A first plurality of memory cells is in a first plane in a first column of the array. A second plurality of memory cells is in a second plane in the same column. The second plurality of memory cells are coupled to the first plurality of memory cells through a series connection of their source/drain regions.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20110210379
    Abstract: Methods, devices, and systems integrating Fin-JFETs and Fin-MOSFETs are provided. One method embodiment includes forming at least on Fin-MOSFET on a substrate and forming at least on Fin-JFET on the substrate.
    Type: Application
    Filed: April 13, 2011
    Publication date: September 1, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Badih El-Kareh, Leonard Forbes
  • Patent number: 8009006
    Abstract: Various embodiments includes a stacked open pattern inductor fabricated above a semiconductor substrate. The stacked open pattern inductor includes a plurality of parallel open conducting patterns embedded in a magnetic oxide or in an insulator and a magnetic material. Embedding the stacked open pattern inductor in a magnetic oxide or in an insulator and a magnetic material increases the inductance of the inductor and allows the magnetic flux to be confined to the area of the inductor. A layer of magnetic material may be located above the inductor and below the inductor to confine electronic noise generated in the stacked open pattern inductor to the area occupied by the inductor. The stacked open pattern inductor may be fabricated using conventional integrated circuit manufacturing processes, and the inductor may be used in connection with computer systems.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: August 30, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110204431
    Abstract: A extractor implanted region is used in a silicon-on-insulator CMOS memory device. The extractor region is reversed biased to remove minority carriers from the body region of partially depleted memory cells. This causes the body region to be fully depleted without the adverse floating body effects.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Inventor: Leonard Forbes
  • Patent number: 8003985
    Abstract: Apparatus having a dielectric containing scandium and gadolinium can provide a reliable structure with a high dielectric constant (high k). In an embodiment, atomic layer deposition (ALD) can be used to form a nanolaminate dielectric of gadolinium oxide (Gd2O3) and scandium oxide (Sc2O3) In an embodiment, a dielectric structure can be formed by depositing gadolinium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing scandium oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. A dielectric containing scandium and gadolinium may be used as gate insulator of a MOSFET, a capacitor dielectric in a DRAM, as tunnel gate insulators in flash memories, as a NROM dielectric, or as a dielectric in other electronic devices, because the high dielectric constant (high k) of the film provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7999334
    Abstract: Embodiments of a dielectric layer containing a hafnium tantalum titanium oxide film structured as one or more monolayers include the dielectric layer disposed in an integrated circuit. Embodiments of methods of fabricating such a dielectric layer provide a dielectric layer for use in a variety of electronic devices. An embodiment may include forming hafnium tantalum titanium oxide film using atomic layer deposition.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7994595
    Abstract: One aspect of this disclosure relates to a method for forming a wafer with a strained semiconductor. In various embodiments of the method, a predetermined contour is formed in one of a semiconductor membrane and a substrate wafer. The semiconductor membrane is bonded to the substrate wafer and the predetermined contour is straightened to induce a predetermined strain in the semiconductor membrane. In various embodiments, a substrate wafer is flexed into a flexed position, a portion of the substrate wafer is bonded to a semiconductor layer when the substrate wafer is in the flexed position, and the substrate wafer is relaxed to induce a predetermined strain in the semiconductor layer. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Joseph E. Geusic, Salman Akram