Patents by Inventor Leonard Forbes

Leonard Forbes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130012034
    Abstract: Dielectric layers containing a zirconium-doped tantalum oxide layer, where the zirconium-doped tantalum oxide layer can be formed of one or more monolayers of tantalum oxide doped with zirconium, provide an insulating layer in a variety of structures for use in a wide range of electronic devices.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20130012031
    Abstract: A dielectric layer containing a hafnium tantalum oxide film and a method of fabricating such a dielectric layer produce a dielectric layer for use in a variety of electronic devices. Embodiments include structures for capacitors, transistors, memory devices, and electronic systems with dielectric layers containing a hafnium tantalum oxide film structured as one or more monolayers.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20130012005
    Abstract: A monolayer or partial monolayer sequencing processing, such as atomic layer deposition (ALD), can be used to form a semiconductor structure of a silicon film on a germanium substrate. Such structures may be useful in high performance electronic devices. A structure may be formed by deposition of a thin silicon layer on a germanium substrate surface, forming a hafnium oxide dielectric layer, and forming a tantalum nitride electrode. The properties of the dielectric may be varied by replacing the hafnium oxide with another dielectric such as zirconium oxide or titanium oxide.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8350320
    Abstract: A memory array with staggered local data/bit lines extending generally in a first direction formed in an upper surface of a substrate and memory cell access transistors extending generally upward and aligned generally atop a corresponding local data/bit line. Selected columns of the memory cell access transistors are sacrificed to define local data/bit access transistors which are interconnected with overlying low resistance global data/bit lines. The global data/bit lines provide selectable low resistance paths between memory cells and sense amplifiers. The sacrificed memory cell access transistors and staggered local data/bit lines provide increased footprints for sense amplifiers to facilitate increased circuit integration.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: January 8, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20130000544
    Abstract: An apparatus and methods of forming the apparatus include a film of transparent conductive titanium-doped indium oxide for use in a variety of configurations and systems. The film of transparent conductive titanium-doped indium oxide may be structured as one or more monolayers. The film of transparent conductive titanium-doped indium oxide may be formed using atomic layer deposition.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20130001575
    Abstract: The present invention includes methods for stressing transistor channels of semiconductor device structures. Such methods include the formation of so-called near-surface “nanocavities” adjacent to the source/drain regions, forming extensions of the source/drain regions adjacent to and including the nanocavities, and implanting matter of a type that will expand or contract the volume of the nanocavities, depending respectively upon whether compressive strain is desirable in transistor channels between the nanocavities, as in PMOS field effect transistors, or tensile strain is wanted in transistor channels, as in NMOS field effect transistors, to enhance carrier mobility and transistor speed. Semiconductor device structures and semiconductor devices including these features are also disclosed.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Arup Bhattacharyya, Leonard Forbes, Paul A. Farrar
  • Publication number: 20120319105
    Abstract: Methods of forming transparent zinc-tin oxide structures are described. Devices that include transparent zinc-tin oxide structures as at least one of a channel layer in a transistor or a transparent film disposed over an electrical device that is at a substrate.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20120313097
    Abstract: A graded composition, high dielectric constant gate insulator is formed between a substrate and floating gate in a flash memory cell transistor. The gate insulator comprises amorphous germanium or a graded composition of germanium carbide and silicon carbide. If the composition of the gate insulator is closer to silicon carbide near the substrate, the electron barrier for hot electron injection will be lower. If the gate insulator is closer to the silicon carbide near the floating gate, the tunnel barrier can be lower at the floating gate.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 13, 2012
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20120313205
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a frontside-illuminated photosensitive imager devices can include a semiconductor substrate having multiple doped regions forming a least one junction and a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation on an opposite side of the semiconductor substrate from the multiple doped regions. The textured region can include surface features sized and positioned to facilitate tuning to a preselected wavelength of light. The device can also include an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 13, 2012
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Publication number: 20120313204
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 13, 2012
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Patent number: 8330202
    Abstract: The use of a germanium carbide (GeC), or a germanium silicon carbide (GeSiC) layer as a floating gate material to replace heavily doped polysilicon (poly) in fabricating floating gates in EEPROM and flash memory results in increased tunneling currents and faster erase operations. Forming the floating gate includes depositing germanium-silicon-carbide in various combinations to obtain the desired tunneling current values at the operating voltage of the memory device.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: December 11, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8323988
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition (ALD), to form a zirconium substituted layer of barium titanium oxide (BaTiO3), produces a reliable ferroelectric structure for use in a variety of electronic devices such as a dielectric in nonvolatile random access memories (NVRAM), tunable dielectrics for multi layer ceramic capacitors (MLCC), infrared sensors and electro-optic modulators. In various embodiments, structures can be formed by depositing alternating layers of barium titanate and barium zirconate by ALD on a substrate surface using precursor chemicals, and repeating to form a sequentially deposited interleaved structure of desired thickness and composition. Such a layer may be used as the gate insulator of a MOSFET, or as a capacitor dielectric.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20120292619
    Abstract: The absorption coefficient of silicon for infrared light is very low and most solar cells absorb very little of the infrared light energy in sunlight. Very thick cells of crystalline silicon can be used to increase the absorption of infrared light energy but the cost of thick crystalline cells is prohibitive. The present invention relates to the use of less expensive microcrystalline silicon solar cells and the use of backside texturing with diffusive scattering to give a very large increase in the absorption of infrared light. Backside texturing comprises a plurality of cusped features providing diffusive scattering. Constructing the solar cell with a smooth front surface results in multiple internal reflections, light trapping, and a large enhancement of the absorption of infrared solar energy.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 22, 2012
    Inventor: Leonard Forbes
  • Publication number: 20120289016
    Abstract: One aspect of the present subject matter relates to a method for forming strained semiconductor film. According to an embodiment of the method, a crystalline semiconductor bridge is formed over a substrate. The bridge has a first portion bonded to the substrate, a second portion bonded to the substrate, and a middle portion between the first and second portions separated from the substrate. The middle portion of the bridge is bonded to the substrate to provide a compressed crystalline semiconductor layer on the substrate. Other aspects are provided herein.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Inventor: Leonard Forbes
  • Patent number: 8304818
    Abstract: The invention includes a method of forming a semiconductor construction. Dopant is implanted into the upper surface of a monocrystalline silicon substrate. The substrate is etched to form a plurality of trenches and cross-trenches which define a plurality of pillars. After the etching, dopant is implanted within the trenches to form a source/drain region that extends less than an entirety of the trench width. The invention includes a semiconductor construction having a bit line disposed within a semiconductor substrate below a first elevation. A wordline extends elevationally upward from the first elevation and substantially orthogonal relative to the bit line. A vertical transistor structure is associated with the wordline. The transistor structure has a channel region laterally surrounded by a gate layer and is horizontally offset relative to the bit line.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 6, 2012
    Assignee: Micron Technology Inc.
    Inventor: Leonard Forbes
  • Publication number: 20120276699
    Abstract: A memory array with data/bit lines extending generally in a first direction formed in an upper surface of a substrate and access transistors extending generally upward and aligned generally atop a corresponding data/bit line. The access transistors have a pillar extending generally upward with a source region formed so as to be in electrical communication with the corresponding data/bit line and a drain region formed generally at an upper portion of the pillar and a surround gate structure substantially completely encompassing the pillar in lateral directions and extending substantially the entire vertical extent of the pillar and word lines extending generally in a second direction and in electrical contact with a corresponding surround gate structure at at least a first surface thereof such that bias voltage applied to a given word line is communicated substantially uniformly in a laterally symmetric extent about the corresponding pillar via the surround gate structure.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Applicant: Micron Technology
    Inventor: Leonard Forbes
  • Patent number: 8294224
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a silicon oxynitride layer on a semiconductor device for use in a variety of electronic systems. The silicon oxynitride layer may be structured to control strain in a silicon channel of the semiconductor device to modify carrier mobility in the silicon channel, where the silicon channel is configured to conduct current under appropriate operating conditions of the semiconductor device.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: October 23, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Arup Bhattacharyya, Leonard Forbes
  • Patent number: 8293611
    Abstract: The present invention includes methods for stressing transistor channels of semiconductor device structures. Such methods include the formation of so-called near-surface “nanocavities” adjacent to the source/drain regions, forming extensions of the source/drain regions adjacent to and including the nanocavities, and implanting matter of a type that will expand or contract the volume of the nanocavities, depending respectively upon whether compressive strain is desirable in transistor channels between the nanocavities, as in PMOS field effect transistors, or tensile strain is wanted in transistor channels, as in NMOS field effect transistors, to enhance carrier mobility and transistor speed. Semiconductor device structures and semiconductor devices including these features are also disclosed.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: October 23, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Arup Bhattacharyya, Leonard Forbes, Paul A Farrar
  • Patent number: 8294196
    Abstract: A non-volatile memory is described having memory cells with a gate dielectric. The gate dielectric is a multilayer charge trapping dielectric between a control gate and a channel region of a transistor to trap positively charged holes. The multilayer charge trapping dielectric comprises at least one layer of high-K.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 23, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8288809
    Abstract: Dielectric layers containing a zirconium-doped tantalum oxide layer, where the zirconium-doped tantalum oxide layer is formed of one or more monolayers of tantalum oxide doped with zirconium, provide an insulating layer in a variety of structures for use in a wide range of electronic devices.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: October 16, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes