Patents by Inventor Luigi Colombo

Luigi Colombo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090305953
    Abstract: The invention provides methods and compositions for treatment of bacterial infections. Methods of the invention include administration of a mixture of dalbavancin multimers and monomers for treatment of a bacterial infection, in particular a Gram-positive bacterial infection of skin and soft tissue. Compositions comprise a mixture of dalbavancin multimer and monomer and a stabilizer, such as dextrose.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 10, 2009
    Inventors: Luigi Colombo, Adriano Malabarba, Martin Stogniew
  • Publication number: 20090298749
    Abstract: The invention provides methods and compositions for treatment of bacterial infections. The composition may be a combination of factors, which include A0, A1, B1, B2, C0, C1, isoB0, and MAG, in the presence of low level solvent. Methods of the invention include administration of dalbavancin formulations for treatment of a bacterial infection, in particular a Gram-positive bacterial infection of skin and soft tissue. Dosing regimens include multiple dose administration of dalbavancin, which often remains at therapeutic levels in the bloodstream for at least one week, providing prolonged therapeutic action against a bacterial infection. Dosing regimens for renal patients are also included.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 3, 2009
    Inventors: Martin Stogniew, Luigi Colombo, Romeo Clabatti
  • Patent number: 7612422
    Abstract: Exemplary embodiments provide structures for dual work function metal gate electrodes. The work function value of a metal gate electrode can be increased and/or decreased by disposing various electronegative species and/or electropositive species at the metal/dielectric interface to control interface dipoles. In an exemplary embodiment, various electronegative species can be disposed at the metal/dielectric interface to increase the work function value of the metal, which can be used for a PMOS metal gate electrode in a dual work function gated device. Various electropositive species can be disposed at the metal/dielectric interface to decrease the work function value of the metal, which can be used for an NMOS metal gate electrode in the dual work function gated device.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Patent number: 7601577
    Abstract: Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo, Antonio Luis Pacheco Rotondaro
  • Patent number: 7601578
    Abstract: A method for improving high-? gate dielectric film (104) properties. The high-? film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay, Antonio Luis Pacheco Rotondaro
  • Publication number: 20090227117
    Abstract: A MOSFET structure including silicate gate dielectrics with nitridation treatments of the gate dielectric prior to gate material deposition.
    Type: Application
    Filed: April 9, 2009
    Publication date: September 10, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Antonio L.P. Rotondaro, Luigi Colombo, Mark R. Visokay, Rajesh Khamankar, Douglas E. Mercer
  • Patent number: 7535066
    Abstract: A MOSFET structure including silicate gate dielectrics with nitridation treatments of the gate dielectric prior to gate material deposition.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: May 19, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Luigi Colombo, Mark R. Visokay, Rajesh Khamankar, Douglas E. Mercer
  • Patent number: 7531400
    Abstract: Semiconductor devices and fabrication methods are presented, in which transistor gate structures are created using doped metal silicide materials. Upper and lower metal silicides are formed above a gate dielectric, wherein the lower metal silicide is doped with n-type impurities for NMOS gates and with p-type impurities for PMOS gates, and wherein a silicon may, but need not be formed between the upper and lower metal silicides. The lower metal silicide can be deposited directly, or may be formed through reaction of deposited metal and poly-silicon, and the lower silicide can be doped by diffusion or implantation, before or after gate patterning.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 12, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mark Visokay, Luigi Colombo
  • Patent number: 7528024
    Abstract: The present invention provides, in one embodiment, a process for forming a dual work function metal gate semiconductor device (100). The process includes providing a semiconductor substrate (105) having a gate dielectric layer (110) thereon and a metal layer (205) on the gate dielectric layer. A work function of the metal layer is matched to a conduction band or a valence band of the semiconductor substrate. The process also includes forming a conductive barrier layer (210) on a portion (215) of the metal layer and a material layer (305) on the metal layer. The metal layer and the material layer are annealed to form a metal alloy layer (405) to thereby match a work function of the metal alloy layer to another of the conduction band or the valence band of the substrate. Other embodiments of the invention include a dual work function metal gate semiconductor device (900) and an integrated circuit (1000).
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: May 5, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay
  • Publication number: 20090104745
    Abstract: In accordance with the present teachings, methods of making dual doped polysilicon gates are provided. The method can include providing a semiconductor structure including a plurality of polysilicon gates having a first critical dimension disposed over a dielectric layer and planarizing the plurality of polysilicon gates with a spin-on material to form a plurality of planarized polysilicon gates. The method can further include doping an exposed first region with p-type dopants to form a plurality of p-doped planarized polysilicon gates and doping an exposed second region with n-type dopants to form a plurality of n-doped planarized polysilicon gates. The method can also include removing the spin-on material to form a plurality of p-doped polysilicon gates and a plurality of n-doped polysilicon gates, wherein critical dimension of each of the plurality of n-doped polysilicon gates and the plurality of p-doped polysilicon gates are substantially similar to the first critical dimension.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 23, 2009
    Inventors: Hyesook Hong, Luigi Colombo, Jinhan Choi
  • Publication number: 20090068828
    Abstract: Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 12, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Publication number: 20090053883
    Abstract: A method of setting a work function of a fully silicided semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a dielectric layer, a silicide layer on the dielectric layer that defines a metal-dielectric layer interface, and a polysilicon layer on the silicide layer), depositing a metal layer over the gate stack, annealing to induce a reaction between the polysilicon layer and the metal layer, and delivering a work function-setting dopant to the metal-dielectric layer interface by way of the reaction.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi COLOMBO, Mark R. VISOKAY, James J. CHAMBERS
  • Patent number: 7470577
    Abstract: Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: December 30, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Patent number: 7449385
    Abstract: CMOS gate dielectric made of high-k metal silicates by reaction of metal with silicon dioxide at the silicon surface. Optionally, a silicon dioxide monolayer may be preserved at the interface.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: November 11, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Luigi Colombo, Douglas E. Mercer
  • Patent number: 7423326
    Abstract: CMOS gate dielectric made of high-k metal silicates by passivating a silicon surface with nitrogen compounds prior to high-k dielectric deposition. Optionally, a silicon dioxide monolayer may be preserved at the interface.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: September 9, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Luigi Colombo, Malcolm J. Bevan
  • Publication number: 20080157228
    Abstract: Exemplary embodiments provide structures and fabrication methods for dual work function metal gate electrodes. The work function value of a metal gate electrode can be increased and/or decreased by disposing various electronegative species and/or electropositive species at the metal/dielectric interface to control interface dipoles. In an exemplary embodiment, various electronegative species can be disposed at the metal/dielectric interface to increase the work function value of the metal, which can be used for a PMOS metal gate electrode in a dual work function gated device. Various electropositive species can be disposed at the metal/dielectric interface to decrease the work function value of the metal, which can be used for an NMOS metal gate electrode in the dual work function gated device.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Patent number: 7387956
    Abstract: The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: June 17, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J Chambers, Mark R Visokay
  • Patent number: 7361599
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Patent number: 7351626
    Abstract: A method for improving high-? gate dielectric film (104) properties. The high-? film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: April 1, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay, Antonio L. P. Rotondaro
  • Patent number: 7351632
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An oxide layer is formed in core and I/O regions of a semiconductor device (506). The oxide layer is removed (508) from the core region of the device. A high-k dielectric layer is formed (510) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions of the core and I/O regions. A silicon nitride layer is grown (516) within PMOS regions of the core and I/O regions by a low temperature thermal process. Subsequently, an oxidation process is performed (518) that oxidizes the silicon nitride into silicon oxynitride.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: April 1, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Mark Robert Visokay, Luigi Colombo, James Joseph Chambers