Patents by Inventor M. Roberts
M. Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11721724Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.Type: GrantFiled: July 1, 2021Date of Patent: August 8, 2023Assignee: Intel CorporationInventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
-
Patent number: 11699747Abstract: Disclosed herein are quantum dot devices with multiple layers of gate metal, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material above the quantum well stack, wherein the insulating material includes a trench; and a gate on the insulating material and extending into the trench, wherein the gate includes a first gate metal in the trench and a second gate metal above the first gate metal.Type: GrantFiled: March 26, 2019Date of Patent: July 11, 2023Assignee: Intel CorporationInventors: Hubert C. George, Sarah Atanasov, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts, Stephanie A. Bojarski
-
Patent number: 11700776Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a substrate and a quantum well stack disposed on the substrate. The quantum well stack may include a quantum well layer and a back gate, and the back gate may be disposed between the quantum well layer and the substrate.Type: GrantFiled: February 4, 2022Date of Patent: July 11, 2023Assignee: Intel CorporationInventors: Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Zachary R. Yoscovits, James S. Clarke, Van H. Le
-
Patent number: 11688735Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gates above the quantum well stack; and a plurality of second gates above the quantum well stack; wherein the plurality of first gates are arranged in electrically continuous rows extending in a first direction, and the plurality of second gates are arranged in electrically continuous rows extending in a second direction perpendicular to the first direction.Type: GrantFiled: June 8, 2021Date of Patent: June 27, 2023Inventors: James S. Clarke, Nicole K. Thomas, Zachary R. Yoscovits, Hubert C. George, Jeanette M. Roberts, Ravi Pillarisetty
-
Publication number: 20230196152Abstract: An array of quantum dot qubits (e.g., an array of spin qubits) relies on a gradient magnetic field to ensure that the qubits are separated in frequency in order to be individually addressable. Furthermore, a strong magnetic field gradient is required to electrically drive the electric dipole spin resonance (EDSR) of the qubits. Quantum dot devices disclosed herein use microcoil arrangements for providing a gradient magnetic field, the microcoil arrangements integrated on the same chip (e.g., on the same die or wafer) as quantum dot qubits themselves. Unlike previous approaches to quantum dot formation and manipulation, various embodiments of the quantum dot devices disclosed herein may enable improved control over magnetic fields and their gradients to realize better frequency targeting of individual qubits, help minimize adverse effects of charge noise on qubit decoherence and provide good scalability in the number of quantum dots included in the device.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Florian Luethi, Hubert C. George, Felix Frederic Leonhard Borjans, Simon Schaal, Lester Lampert, Thomas Francis Watson, Jeanette M. Roberts, Jong Seok Park, Sushil Subramanian, Stefano Pellerano
-
Publication number: 20230190151Abstract: Various examples are directed to systems and methods that may utilize an analyte sensor system comprising a sensor enclosure; an analyte sensor extending from the sensor enclosure; and sensor electronics positioned within the sensor enclosure. The sensor electronics may be configured to detect that a wireless signal has changed from a first state to a second state, where the wireless signal may be provided through the sensor enclosure. After detecting that the wireless signal has changed from the first state to the second state, the sensor electronics may monitor whether the wireless signal remains in the second state for at least a stability threshold time period. The sensor electronics may execute a responsive action in the sensor system based at least in part on whether the wireless signal remains in the second state for at least the stability threshold time period.Type: ApplicationFiled: December 16, 2022Publication date: June 22, 2023Inventors: James S. Amidei, Stefan M. Robert, Anna Harley-Trochimczyk, Thomas George O'Connell, Anderson Ionut Micu
-
Patent number: 11682701Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack and a plurality of linear arrays of gates above the quantum well stack to control quantum dot formation in the quantum well stack. An insulating material may be between a first linear array of gates and a second linear array of gates, the insulating material may be between individual gates in the first linear array of gates, and gate metal of the first linear array of gates may extend over the insulating material.Type: GrantFiled: March 27, 2019Date of Patent: June 20, 2023Assignee: Intel CorporationInventors: Stephanie A. Bojarski, Hubert C. George, Sarah Atanasov, Nicole K. Thomas, Ravi Pillarisetty, Lester Lampert, Thomas Francis Watson, David J. Michalak, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
-
Patent number: 11677017Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.Type: GrantFiled: September 10, 2021Date of Patent: June 13, 2023Assignee: Intel CorporationInventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
-
Patent number: 11664421Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material disposed above the quantum well stack, wherein the insulating material includes a trench; and a gate metal disposed on the insulating material and extending into the trench.Type: GrantFiled: August 7, 2020Date of Patent: May 30, 2023Assignee: Intel CorporationInventors: Hubert C. George, Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
-
Patent number: 11658991Abstract: An entity can disseminate nonces by introducing them into various aspects of network traffic, and then listening for them, thereby detecting eavesdroppers on the Internet. A nonce may be numeric, alphanumeric, or otherwise; nonces are contextually appropriate to how they are disseminated. Preferably, a nonce is disseminated by incorporating it into some aspect of network traffic. For example, a nonce can be placed in a network identifier such as an IP address or domain name label. Correlating the circumstances under which the nonce was disseminated and under which it was observed to “propagate”, intelligence about who is eavesdropping on what portions of the Internet can be derived. Such intelligence can be put to many uses, including reporting on eavesdroppers, routing traffic around eavesdroppers, developing reputation scores, and adopting enhanced obfuscation/privacy/security techniques.Type: GrantFiled: February 19, 2021Date of Patent: May 23, 2023Assignee: Akamai Technologies, Inc.Inventors: David J. Plonka, Kyle R. Rose, Laura M. Roberts
-
Patent number: 11658212Abstract: Disclosed herein are quantum dot devices with conductive liners, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base, a first fin extending from the base, a second fin extending from the base, a conductive material between the first fin and the second fin, and a dielectric material between the conductive material and the first fin.Type: GrantFiled: February 13, 2019Date of Patent: May 23, 2023Assignee: Intel CorporationInventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Stephanie A. Bojarski, Roman Caudillo, David J. Michalak, Jeanette M. Roberts, Thomas Francis Watson
-
Patent number: 11629519Abstract: The present anti-ballistic shelter is a reinforced unit configured to comply with both ISO standards for size and weight, and with the U.S. Department of State Certification Standard for Forced Entry and Ballistic Resistance of Structural Systems. Each end and side wall of the unit is reinforced with wall studs that penetrate the unit's structural framework. Even though these wail studs are welded into place, penetration of the wall studs into the framework ensures acceptable blast, ballistic, and forced entry resistance even if the welds are flawed.Type: GrantFiled: March 16, 2017Date of Patent: April 18, 2023Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMYInventors: Justin M. Roberts, John M. Hoemann, Craig R Ackerman
-
Publication number: 20230112041Abstract: Techniques for music selection based on exercise detection are disclosed. In one aspect, a method of operating a wearable device may involve determining, based on output of one or more biometric sensors, that a user of the wearable device has started an exercise and playing music for the user of the wearable device in response to determining the start of the exercise. For example, playing the music may involve turning on a music player based on the start of the exercise. In another example, the wearable device includes the music player.Type: ApplicationFiled: October 14, 2022Publication date: April 13, 2023Inventors: Logan Niehaus, Peter Duyan, Subramaniam Venkatraman, Shelten Gee Jao Yuen, Timothy M. Roberts
-
Patent number: 11616126Abstract: A quantum dot device is disclosed that includes a quantum well stack, a first and a second plunger gates above the quantum well stack, and a passive barrier element provided in a portion of the quantum well stack between the first and the second plunger gates. The passive barrier element may serve as means for localizing charge in the quantum dot device and may be used to replace charge localization control by means of a barrier gate. In general, a quantum dot device with a plurality of plunger gates provided over a given quantum well stack may include a respective passive barrier element between any, or all, of adjacent plunger gates in the manner as described for the first and second plunger gates.Type: GrantFiled: September 27, 2018Date of Patent: March 28, 2023Assignee: Intel CorporationInventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
-
Patent number: 11594599Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; a plurality of gates disposed above the quantum well stack, wherein at least two of the gates are spaced apart in a first dimension above the quantum well stack, at least two of the gates are spaced apart in a second dimension above the quantum well stack, and the first and second dimensions are perpendicular; and an insulating material disposed above the quantum well stack, wherein the insulating material extends between at least two of the gates spaced apart in the first dimension, and the insulating material extends between at least two of the gates spaced apart in the second dimension.Type: GrantFiled: August 10, 2016Date of Patent: February 28, 2023Assignee: Intel CorporationInventors: James S. Clarke, Robert L. Bristol, Ravi Pillarisetty, Jeanette M. Roberts, Hubert C. George, Nicole K. Thomas
-
Patent number: 11575035Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a plurality of gates disposed on the quantum well stack; and a top gate at least partially disposed on the plurality of gates such that the plurality of gates are at least partially disposed between the top gate and the quantum well stack.Type: GrantFiled: September 22, 2021Date of Patent: February 7, 2023Assignee: Intel CorporationInventors: Jeanette M. Roberts, James S. Clarke, Ravi Pillarisetty, David J. Michalak, Zachary R. Yoscovits
-
Patent number: 11569428Abstract: One superconducting qubit device package disclosed herein includes a die having a first face and an opposing second face, and a package substrate having a first face and an opposing second face. The die includes a quantum device including a plurality of superconducting qubits and a plurality of resonators on the first face of the die, and a plurality of conductive pathways coupled between conductive contacts at the first face of the die and associated ones of the plurality of superconducting qubits or of the plurality of resonators. The second face of the package substrate also includes conductive contacts. The device package further includes first level interconnects disposed between the first face of the die and the second face of the package substrate, coupling the conductive contacts at the first face of the die with associated conductive contacts at the second face of the package substrate.Type: GrantFiled: December 27, 2016Date of Patent: January 31, 2023Inventors: Jeanette M. Roberts, Adel A. Elsherbini, Shawna Liff, Johanna M. Swan, Roman Caudillo, Zachary R. Yoscovits, Nicole K. Thomas, Ravi Pillarisetty, Hubert C. George, James S. Clarke
-
Patent number: 11557630Abstract: Disclosed herein are quantum dot devices and techniques. In some embodiments, a quantum computing processing device may include a quantum well stack, an array of quantum dot gate electrodes above the quantum well stack, and an associated array of selectors above the array of quantum dot gate electrodes. The array of quantum dot gate electrodes and the array of selectors may each be arranged in a grid.Type: GrantFiled: September 28, 2017Date of Patent: January 17, 2023Assignee: Intel CorporationInventors: Ravi Pillarisetty, Nicole K. Thomas, Abhishek A. Sharma, Hubert C. George, Jeanette M. Roberts, Zachary R. Yoscovits, Roman Caudillo, Kanwaljit Singh, James S. Clarke
-
Patent number: PP35290Abstract: A new and distinct variety of nectarine tree (Prunus persica nucipersica), which is denominated varietally as ‘Wanectseven’, and which produces an attractively colored white-fleshed, tight freestone nectarines which is mature for harvesting and shipment approximately June 10 to June 20 under the ecological conditions prevailing in the San Joaquin Valley of central California.Type: GrantFiled: December 9, 2022Date of Patent: August 1, 2023Assignee: Wawona Packing Co., LLCInventors: John Keith Slaughter, Kaylan M. Roberts
-
Patent number: PP35302Abstract: A new and distinct variety of peach tree (Prunus persica), which is denominated varietally as ‘Wapeachthree’, and which produces an attractively colored yellow-fleshed, clingstone peach which is mature for harvesting and shipment approximately October 25 to November 1 under the ecological conditions prevailing in the San Joaquin Valley of central California.Type: GrantFiled: December 9, 2022Date of Patent: August 8, 2023Assignee: Wawona Packing Co., LLCInventors: John Keith Slaughter, Kaylan M. Roberts