Patents by Inventor Masayuki Katagiri

Masayuki Katagiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8198193
    Abstract: A manufacturing method of a semiconductor substrate includes the following steps: forming a first wiring layer on a substrate; forming an interlayer insulating film having a via hole on the wiring layer; forming carbon nanotubes in the via hole; performing a fluorination treatment entirely to the substrate; forming an embedded film in the via hole having the carbon nanotubes therein; and polishing the substrate to entirely flatten the substrate.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: June 12, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoshi Sakuma, Tadashi Sakai, Yuichi Yamazaki, Masayuki Katagiri, Mariko Suzuki, Makoto Wada
  • Publication number: 20120052680
    Abstract: a manufacturing method of a semiconductor substrate includes the following steps: forming a first wiring layer on a substrate; forming an interlayer insulating film having a via hole on the wiring layer; forming carbon nanotubes in the via hole; performing a fluorination treatment entirely to the substrate; forming an embedded film in the via hole having the carbon nanotubes therein; and polishing the substrate to entirely flatten the substrate.
    Type: Application
    Filed: March 7, 2011
    Publication date: March 1, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Naoshi SAKUMA, Tadashi Sakai, Yuichi Yamazaki, Masayuki Katagiri, Mariko Suzuki, Makoto Wada
  • Publication number: 20120049370
    Abstract: According to one embodiment, a carbon nanotube interconnection includes a first conductive layer, an insulating film, a catalyst underlying film, a catalyst deactivation film, a catalyst film, and carbon nanotubes. An insulating film is formed on the first conductive layer and including a hole. An catalyst underlying film is formed on the first conductive layer on a bottom surface in the hole and on the insulating film on a side surface in the hole. A catalyst deactivation film is formed on the catalyst underlying film on the side surface in the hole. A catalyst film is formed on the catalyst underlying film on the bottom surface in the hole and the catalyst deactivation film on the side surface in the hole. Carbon nanotubes are formed in the hole, the carbon nanotubes including one end in contact with the catalyst film on the bottom surface in the hole.
    Type: Application
    Filed: August 23, 2011
    Publication date: March 1, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Wada, Yuichi Yamazaki, Masayuki Katagiri, Masayuki Kitamura, Atsuko Sakata, Akihiro Kajita, Tadashi Sakai, Naohsi Sakuma
  • Patent number: 8053678
    Abstract: An interconnection includes a bundle of conductive members, each of the conductive members being made of carbon nanotube having an end connected to a first conductive film, and another end connected to a second conductive film separated from the first conductive film; and carbon particles each having a diamond crystal structure, dispersed between the conductive members.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Tohshiba
    Inventors: Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Tomio Ono, Mariko Suzuki
  • Publication number: 20110233779
    Abstract: According to one embodiment, a semiconductor device includes an interlayer insulation film provided on a substrate including a Cu wiring, a via hole formed in the interlayer insulation film on the Cu wiring, a first metal film selectively formed on the Cu wiring in the via hole, functioning as a barrier to the Cu wiring, and functioning as a promoter of carbon nanotube growth, a second metal film formed at least on the first metal film in the via hole, and functioning as a catalyst of the carbon nanotube growth, and carbon nanotubes buried in the via hole in which the first metal film and the second metal film are formed.
    Type: Application
    Filed: March 21, 2011
    Publication date: September 29, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Wada, Yosuke Akimoto, Yuichi Yamazaki, Masayuki Katagiri, Noriaki Matsunaga, Tadashi Sakai, Naoshi Sakuma
  • Publication number: 20110147177
    Abstract: A structure includes a conductive film (12) provided in an underlying layer (10); and a carbon nanotube bundle (20) including a plurality of carbon nanotubes each having one end connected to the conductive film (12), wherein, at other end side of the carbon nanotube bundle (20), at least carbon nanotubes allocated at outer side of the carbon nanotube bundle (20) extend with convex curvatures toward the outside of the carbon nanotube bundle (20), and the convex curvatures of the carbon nanotubes allocated at the outer side of the carbon nanotube bundle are larger than those of inner side of the carbon nanotube bundle (20), and diameters of the carbon nanotube bundle (20) decrease toward the other end of the carbon nanotube bundle (20).
    Type: Application
    Filed: August 25, 2008
    Publication date: June 23, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Mariko Suzuki
  • Publication number: 20110057322
    Abstract: According to one embodiment, a carbon nanotube interconnect includes a first interconnection layer, an interlayer dielectric film, a second interconnection layer, a contact hole, a plurality of carbon nanotubes and a film. The interlayer dielectric film is formed on the first interconnection layer. The second interconnection layer is formed on the interlayer dielectric film. The contact hole is formed in the interlayer dielectric film between the first interconnection layer and the second interconnection layer. The carbon nanotubes are formed in the contact hole. The carbon nanotubes have a first end connected to the first interconnection layer and a second end connected to the second interconnection layer. The film is formed between the interlayer dielectric film and the second interconnection layer. The film has a portion filled between the second ends of the carbon nanotubes.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 10, 2011
    Inventors: Noriaki MATSUNAGA, Makoto Wada, Yosuke Akimoto, Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Yuichi Yamazaki
  • Publication number: 20110050080
    Abstract: According to the embodiment, an electron emission element includes a conductive substrate, a first diamond layer of a first conductivity type formed on the conductive substrate, and a second diamond layer of the first conductivity type formed on the first diamond layer. Thereby, it becomes possible to provide the electron emission element having a high electron emission amount and a high current density even in a low electric field at low temperature and the electron emission apparatus using this electron emission element.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mariko Suzuki, Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Yuichi Yamazaki
  • Publication number: 20100209704
    Abstract: In the growth of carbon nanotubes, the aggregation of catalytic fine particles therefor is a problem. In order to realize the growth of carbon nanotubes into a high density, the carbon nanotube growing process includes a first plasma treatment step of treating a surface having catalytic fine particles with a plasma species generated from a gas which contains at least hydrogen or a rare gas without carbon element, a second plasma treatment step of forming a carbon layer on the surface of the catalytic fine particles by a plasma generated from a gas which contains at least a hydrocarbon after the first plasma treatment step, and a carbon nanotube growing step of growing carbon nanotubes by use of a plasma generated from a gas which contains at least a hydrocarbon after the second plasma treatment step.
    Type: Application
    Filed: January 19, 2010
    Publication date: August 19, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichi Yamazaki, Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Mariko Suzuki, Shintaro Sato
  • Publication number: 20100091803
    Abstract: A solid-state far ultraviolet light emitting element is formed by a hexagonal boron nitride single crystal, excited by electron beam irradiation to emit far ultraviolet light having a maximum light emission peak in a far ultraviolet region at a wavelength of 235 nm or shorter.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 15, 2010
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
  • Publication number: 20100072054
    Abstract: A carbon nanotube manufacturing apparatus includes a plasma generating unit that generates plasma including ions, radicals, and electrons, from gas; a carbon nanotube manufacturing unit that manufactures carbon nanotubes from the radicals; a shielding electrode unit that is provided between the plasma generating unit and the carbon nanotube manufacturing unit and prevents the ions and the electrons from entering the carbon nanotube manufacturing unit; and a bias applying unit that applies a voltage to the shielding electrode unit, wherein the shielding electrode unit includes at least two first shielding electrodes that are arranged one above another, each of the first shielding electrodes having at least one opening.
    Type: Application
    Filed: June 30, 2009
    Publication date: March 25, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichi Yamazaki, Tadashi Sakai, Naoshi Sakuma, Masayuki Katagiri, Mariko Suzuki
  • Publication number: 20090130488
    Abstract: Provided is a cyanate ester polymer having excellent flame retardance, low dielectric constant, low dielectric loss tangent and high heat resistance. Specifically provided is a cyanate ester polymer obtained by polymerizing a cyanate ester compound represented by the following general formula (1). (1) In the formula, X represents OCN or OH, and 10-100% by mol of X is composed of OCN.
    Type: Application
    Filed: September 26, 2006
    Publication date: May 21, 2009
    Inventors: Yuuichi Sugano, Masayuki Katagiri, Daisuke Ohno, Tomoaki Kubota
  • Patent number: 7528220
    Abstract: A cyanate ester compound represented by the formula (1), wherein Ar2 represents a phenylene group, a naphthylene group or a biphenylene group, Ar1 represents a naphthylene group or a biphenylene group when Ar2 is a phenylene group, or Ar1 represents a phenylene group, a naphthylene group or a biphenylene group when Ar2 is a naphthylene group or a biphenylene group, Rx represents all substituents of Ar1, each Rx is the same or different and represents hydrogen, an alkyl group or an aryl group, Ry represents all substituents of Ar2, each Ry is the same or different and represents hydrogen, an alkyl group or an aryl group, and n is an integer of 1 to 50.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: May 5, 2009
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yuuichi Sugano, Masayuki Katagiri, Daisuke Ohno, Seiji Kita, Masanobu Sogame, Hironao Fukuoka, Masayoshi Ueno
  • Publication number: 20090110938
    Abstract: A cyanate ester resin composition for a printed wiring board material containing a cyanate ester resin component A comprising a cyanate ester compound represented by the formula (1) and/or an oligomer thereof, and at least one component B selected from the group consisting of an epoxy resin and a maleimide compound, which resin composition is improved in heat resistance and heat resistance after moisture absorption, is excellent in mechanical properties such as elastic modulus and has flame retardancy without a halogen compound, and a prepreg and a laminate each of which uses the resin composition defined as above wherein the resin composition contains the component A and at least the epoxy resin as the component B.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 30, 2009
    Inventors: Yoshimasa Nishimura, Masanobu Sogame, Hironao Fukuoka, Yuuichi Sugano, Masayuki Katagiri
  • Publication number: 20080245553
    Abstract: An interconnection includes a bundle of conductive members, each of the conductive members being made of carbon nanotube having an end connected to a first conductive film, and another end connected to a second conductive film separated from the first conductive film; and carbon particles each having a diamond crystal structure, dispersed between the conductive members.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 9, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadashi SAKAI, Naoshi Sakuma, Masayuki Katagiri, Tomio Ono, Mariko Suzuki
  • Publication number: 20060185577
    Abstract: A highly pure hexagonal boron nitride single crystal not influenced by impurities and capable of high-luminance short wave ultraviolet light emission reflecting inherent characteristics is provided; a high-luminance ultraviolet light emitting element is provided by using the above single crystal; and utilizing the above element, a simple compact low-cost long-lived far ultraviolet solid-state laser and far ultraviolet solid-state light emitting apparatus are provided. A highly pure hexagonal boron nitride single crystal having a single light emission peak in the far ultraviolet region of up to a wavelength of 235 nm is produced by melting said boron nitride crystal as raw material in the presence of a highly pure solvent under high-temperature and high-pressure, followed by crystallization. A light emitting element or a light emitting layer comprised of the obtained crystal is excited with electron beams, and the thus generated far ultraviolet light resonated or without resonation is taken out.
    Type: Application
    Filed: November 17, 2004
    Publication date: August 24, 2006
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
  • Publication number: 20060084787
    Abstract: A cyanate ester compound represented by the formula (1), wherein Ar2 represents a phenylene group, a naphthylene group or a biphenylene group, Ar1 represents a naphthylene group or a biphenylene group when Ar2 is a phenylene group, or Ar1 represents a phenylene group, a naphthylene group or a biphenylene group when Ar2 is a naphthylene group or a biphenylene group, Rx represents all substituents of Ar1, each Rx is the same or different and represents hydrogen, an alkyl group or an aryl group, Ry represents all substituents of Ar2, each Ry is the same or different and represents hydrogen, an alkyl group or an aryl group, and n is an integer of 1 to 50.
    Type: Application
    Filed: November 10, 2005
    Publication date: April 20, 2006
    Inventors: Yuuichi Sugano, Masayuki Katagiri, Daisuke Ohno, Seiji Kita, Masanobu Sogame, Hironao Fukuoka, Masayoshi Ueno
  • Publication number: 20050182203
    Abstract: A cyanate ester compound represented by the formula (1), wherein Ar2 represents a phenylene group, a naphthylene group or a biphenylene group, Ar1 represents a naphthylene group or a biphenylene group when Ar2 is a phenylene group, or Ar1 represents a phenylene group, a naphthylene group or a biphenylene group when Ar2 is a naphthylene group or a biphenylene group, Rx represents all substituents of Ar1 each Rx is the same or different and represents hydrogen, an alkyl group or an aryl group, Ry represents all substituents of Ar2, each Ry is the same or different and represents hydrogen, an alkyl group or an aryl group, and n is an integer of 1 to 50.
    Type: Application
    Filed: February 15, 2005
    Publication date: August 18, 2005
    Inventors: Yuuichi Sugano, Masayuki Katagiri, Daisuke Ohno, Seiji Kita, Yoshikazu Shima
  • Patent number: 6926881
    Abstract: There is disclosed a process for producing a hydrogen-containing gas, which comprises reacting methanol, steam and oxygen in the presence of (1) a catalyst comprising platinum and zinc oxide, wherein the content of the platinum is in the range of 5 to 50% by weight based on the total amount of the platinum and zinc oxide, or (2) a catalyst comprising platinum, zinc oxide and chromium oxide, wherein the atomic ratio of zinc to chromium (zinc/chromium) is in the range of 2 to 30, or (3) a catalyst comprising platinum, zinc oxide and at least one element selected from the group consisting of lead, bismuth and indium.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: August 9, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Shigeyuki Hirose, Futoshi Ikoma, Masayuki Katagiri, Koki Takamura, Yasushi Hiramatsu, Mikio Yoneoka
  • Patent number: 6916458
    Abstract: There is disclosed a process for producing a hydrogen-containing gas, which comprises reacting methanol, steam and oxygen in the presence of a catalyst comprising palladium, zinc and at least one metal selected from the group consisting of chromium, gallium, copper, indium, bismuth and platinum.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: July 12, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yasuhiro Kushida, Masayuki Katagiri, Hutoshi Ikoma, Shigeyuki Hirose, Yasushi Hiramatsu, Mikio Yoneoka