Patents by Inventor Michael R Krames

Michael R Krames has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8846423
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: September 30, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Patent number: 8847252
    Abstract: A III-nitride light emitting layer is disposed between an n-type region and a p-type region in a double heterostructure. At least a portion of the III-nitride light emitting layer has a graded composition.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 30, 2014
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Yu-Chen Shen, Nathan F. Gardner, Satoshi Watanabe, Michael R. Krames, Gerd O. Mueller
  • Publication number: 20140191265
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 10, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V
    Inventors: MICHAEL D. CAMRAS, MICHAEL R. KRAMES, WAYNE L. SNYDER, FRANK M. STERANKA, ROBERT C. TABER, JOHN J. UEBBING, DOUGLAS W. POCIUS, TROY A. TROTTIER, CHRISTOPHER H. LOWERY, GERD O. MUELLER, REGINA B. MUELLER-MACH
  • Patent number: 8748923
    Abstract: A material such as a phosphor is optically coupled to a semiconductor structure including a light emitting region disposed between an n-type region and a p-type region, in order to efficiently extract light from the light emitting region into the phosphor. The phosphor may be phosphor grains in direct contact with a surface of the semiconductor structure, or a ceramic phosphor bonded to the semiconductor structure, or to a thin nucleation structure on which the semiconductor structure may be grown. The phosphor is preferably highly absorbent and highly efficient. When the semiconductor structure emits light into such a highly efficient, highly absorbent phosphor, the phosphor may efficiently extract light from the structure, reducing the optical losses present in prior art devices.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: June 10, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael R. Krames, Gerd O. Mueller
  • Patent number: 8748912
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Publication number: 20140103356
    Abstract: InGaN-based light-emitting devices fabricated on an InGaN template layer are disclosed.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: SORAA, INC.
    Inventors: Michael R. KRAMES, Mark P. D'EVELYN, Akinori KOUKITU, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 8686458
    Abstract: A light emitting diode device emitting at a wavelength of 390-415 nm has a bulk gallium and nitrogen containing substrate with an active region. The device has a current density of greater than about 175 Amps/cm2 and an external quantum efficiency with a roll off of less than about 5% absolute efficiency.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 1, 2014
    Assignee: Soraa, Inc.
    Inventors: Michael R. Krames, Mark P. D'Evelyn, James W. Raring, Thomas M. Katona
  • Patent number: 8679869
    Abstract: An AlGaInP light emitting device is formed as a thin, flip chip device. The device includes a semiconductor structure comprising an AlGaInP light emitting layer disposed between an n-type region and a p-type region. N- and p-contacts electrically connected to the n- and p-type regions are both formed on the same side of the semiconductor structure. The semiconductor structure is connected to a mount via the contacts. A growth substrate is removed from the semiconductor structure and a thick transparent substrate is omitted, such that the total thickness of semiconductor layers in the device is less than 15 ?m some embodiments, less than 10 ?m in some embodiments. The top side of the semiconductor structure may be textured.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 25, 2014
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Rafael I. Aldaz, John E. Epler, Patrick N. Grillot, Michael R. Krames
  • Publication number: 20140027789
    Abstract: A light emitting diode device has a bulk gallium and nitrogen containing substrate with an active region. The device has a lateral dimension and a thick vertical dimension such that the geometric aspect ratio forms a volumetric diode that delivers a nearly uniform current density across the range of the lateral dimension.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: SORAA, INC.
    Inventors: Thomas M. Katona, James W. Raring, Mark P. D'Evelyn, Michael R. Krames, Aurelien J.F. David
  • Publication number: 20140021883
    Abstract: A light emitting diode device emitting at a wavelength of 390-415 nm has a bulk gallium and nitrogen containing substrate with an active region. The device has a current density of greater than about 175 Amps/cm2 and an external quantum efficiency with a roll off of less than about 5% absolute efficiency.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 23, 2014
    Inventors: Thomas M. Katona, James W. Raring, Mark P. D'Evelyn, Michael R. Krames
  • Patent number: 8628985
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 8597967
    Abstract: The present disclosure relates generally to semiconductor techniques. More specifically, embodiments of the present disclosure provide methods for efficiently dicing substrates containing gallium and nitrogen material. Additionally the present disclosure provide techniques resulting in a optical device comprising a substrate having three or more corners, where at least one of the corners is defined by a dislocation bundle characterized by a diameter of less than 100 microns, the gallium and nitrogen containing substrate having a predefined portion free from dislocation bundle centers, an active region containing one or more active layers, the active region being positioned within the predefined region; and a conductive region formed within the predefined region.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 3, 2013
    Assignee: Soraa, Inc.
    Inventors: Michael R. Krames, Tai Margalith, Rafael Aldaz
  • Publication number: 20130313562
    Abstract: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features.
    Type: Application
    Filed: June 3, 2013
    Publication date: November 28, 2013
    Inventors: John Edward Epler, PAUL S. MARTIN, MICHAEL R. KRAMES
  • Publication number: 20130313516
    Abstract: LED lamps having improved light quality are disclosed. The lamps emit more than 500 lm and more than 2% of the power in the spectral power distribution is emitted within a wavelength range from about 390 nm to about 430 nm.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 28, 2013
    Applicant: SORAA, INC.
    Inventors: Aurelien J. F. David, Troy A. Trottier, Michael R. Krames, Arpan Chakraborty, James W. Raring, Michael J. Grundmann
  • Publication number: 20130293145
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, JR., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Patent number: 8502465
    Abstract: A light emitting diode device emitting at a wavelength of 390-415 nm has a bulk gallium and nitrogen containing substrate with an active region. The device has a current density of greater than about 175 Amps/cm2 and an external quantum efficiency with a roll off of less than about 5% absolute efficiency.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: August 6, 2013
    Assignee: Soraa, Inc.
    Inventors: Thomas M. Katona, James W. Raring, Mark P. D'Evelyn, Michael R. Krames
  • Patent number: 8492244
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Soitec
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Patent number: 8486771
    Abstract: Methods of fabricating relaxed layers of semiconductor materials include forming structures of a semiconductor material overlying a layer of a compliant material, and subsequently altering a viscosity of the compliant material to reduce strain within the semiconductor material. The compliant material may be reflowed during deposition of a second layer of semiconductor material. The compliant material may be selected so that, as the second layer of semiconductor material is deposited, a viscosity of the compliant material is altered imparting relaxation of the structures. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Methods of fabricating semiconductor structures and devices are also disclosed. Novel intermediate structures are formed during such methods.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 16, 2013
    Assignee: Soitec
    Inventors: Fabrice Letertre, Bruce Faure, Michael R. Krames, Nathan F. Gardner
  • Patent number: 8481408
    Abstract: A method for relaxing a layer of a strained material. The method includes depositing a first low-viscosity layer on a first face of a strained material layer; bonding a first substrate to the first low-viscosity layer to form a first composite structure; subjecting the composite structure to heat treatment sufficient to cause reflow of the first low-viscosity layer so as to at least partly relax the strained material layer; and applying a mechanical pressure to a second face of the strained material layer wherein the second face is opposite to the first face and with the mechanical pressure applied perpendicularly to the strained material layer during at least part of the heat treatment to relax the strained material.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 9, 2013
    Assignee: Soitec
    Inventors: Fabrice Letertre, Carlos Mazure, Michael R. Krames, Melvin B. McLaurin, Nathan F. Gardner
  • Patent number: 8482104
    Abstract: A method for growth of indium-containing nitride films is described, particularly a method for fabricating a gallium, indium, and nitrogen containing material. On a substrate having a surface region a material having a first indium-rich concentration is formed, followed by a second thickness of material having a first indium-poor concentration. Then a third thickness of material having a second indium-rich concentration is added to form a sandwiched structure which is thermally processed to cause formation of well-crystallized, relaxed material within a vicinity of a surface region of the sandwich structure.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 9, 2013
    Assignee: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, Christiane Poblenz, Michael R. Krames