Patents by Inventor Michael R Krames

Michael R Krames has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120025231
    Abstract: LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Michael R. Krames, John E. Epler, Daniel A. Steigerwald, Tal Margalith
  • Patent number: 8105852
    Abstract: A method according to embodiments of the invention includes providing a substrate comprising a host and a seed layer bonded to the host. The seed layer comprises a plurality of regions. A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is grown on the substrate. A top surface of a semiconductor layer grown on the seed layer has a lateral extent greater than each of the plurality of seed layer regions.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 31, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Nathan F. Gardner, Michael R. Krames, Melvin B. McLaurin, Sungsoo Yi
  • Publication number: 20120021543
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Application
    Filed: October 4, 2011
    Publication date: January 26, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V
    Inventors: Michael D. CAMRAS, MICHAEL R. KRAMES, WAYNE L. SNYDER, FRANK M. STERANKA, ROBERT C. TABER, JOHN J. UEBBING, DOUGLAS W. POCIUS, TROY A. TROTTIER, CHRISTOPHER H. LOWERY, GERD O. MUELLER, REGINA B. MUELLER-MACH
  • Patent number: 8080828
    Abstract: Low profile, side-emitting LEDs are described that generate white light, where all light is emitted within a relatively narrow angle generally parallel to the surface of the light-generating active layer. The LEDs enable the creation of very thin backlights for backlighting an LCD. In one embodiment, the LED emits blue light and is a flip chip with the n and p electrodes on the same side of the LED. Separately from the LED, a transparent wafer has deposited on it a red and green phosphor layer. The phosphor color temperature emission is tested, and the color temperatures vs. positions along the wafer are mapped. A reflector is formed over the transparent wafer. The transparent wafer is singulated, and the phosphor/window dice are matched with the blue LEDs to achieve a target white light color temperature. The phosphor/window is then affixed to the LED.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 20, 2011
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Michael R. Krames, Gerd Mueller, Oleg Borisovich Shchekin, Mark Pugh, Gerard Harbers, John E. Epler, Serge Bierhuizen, Regina Mueller-Mach
  • Patent number: 8067254
    Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: November 29, 2011
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Patent number: 8062916
    Abstract: LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 22, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company
    Inventors: Michael R. Krames, John E. Epler, Daniel A. Steigerwald, Tal Margalith
  • Patent number: 8053905
    Abstract: A light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region, a metal p-contact disposed on the p-type region, and a metal n-contact disposed on the n-type region. The metal p-contact and the metal n-contact are both formed on the same side of the semiconductor structure. The light emitting device is connected to a mount by a bonding structure. The bonding structure includes a plurality of metal regions separated by gaps and a metal structure disposed between the light emitting device and the mount proximate to an edge of the light emitting device. The metal structure is configured such that during bonding, the metal structure forms a continuous seal between the light emitting device and the mount.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: November 8, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: John E. Epler, Michael R. Krames, James G. Neff, Stefano Schiaffino
  • Patent number: 8049234
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: November 1, 2011
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Patent number: 8039866
    Abstract: A mount for a semiconductor device includes a carrier, at least two metal leads disposed on a bottom surface of the carrier, and a cavity extending through a thickness of the carrier to expose a portion of the top surfaces of the metal leads. A semiconductor light emitting device is positioned in the cavity and is electrically and physically connected to the metal leads. The carrier may be, for example, silicon, and the leads may be multilayer structures, for example a thin gold layer connected to a thick copper layer.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 18, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: M. George Craford, Michael R. Krames
  • Publication number: 20110180911
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Publication number: 20110177631
    Abstract: A method according to embodiments of the invention includes providing a substrate comprising a host and a seed layer bonded to the host. The seed layer comprises a plurality of regions. A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is grown on the substrate. A top surface of a semiconductor layer grown on the seed layer has a lateral extent greater than each of the plurality of seed layer regions.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Nathan F. Gardner, Michael R. Krames, Melvin B. McLaurin, Sungsoo Yi
  • Publication number: 20110175112
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Aurelien J. F. DAVID, Michael R. KRAMES, Melvin B. McLAURIN
  • Patent number: 7981767
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 19, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Publication number: 20110156056
    Abstract: A material such as a phosphor is optically coupled to a semiconductor structure including a light emitting region disposed between an n-type region and a p-type region, in order to efficiently extract light from the light emitting region into the phosphor. The phosphor may be phosphor grains in direct contact with a surface of the semiconductor structure, or a ceramic phosphor bonded to the semiconductor structure, or to a thin nucleation structure on which the semiconductor structure may be grown. The phosphor is preferably highly absorbent and highly efficient. When the semiconductor structure emits light into such a highly efficient, highly absorbent phosphor, the phosphor may efficiently extract light from the structure, reducing the optical losses present in prior art devices.
    Type: Application
    Filed: March 11, 2011
    Publication date: June 30, 2011
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY LLC
    Inventors: Michael R. Krames, Gerd O. Mueller
  • Publication number: 20110114987
    Abstract: A light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region, a metal p-contact disposed on the p-type region, and a metal n-contact disposed on the n-type region. The metal p-contact and the metal n-contact are both formed on the same side of the semiconductor structure. The light emitting device is connected to a mount by a bonding structure. The bonding structure includes a plurality of metal regions separated by gaps and a metal structure disposed between the light emitting device and the mount proximate to an edge of the light emitting device. The metal structure is configured such that during bonding, the metal structure forms a continuous seal between the light emitting device and the mount.
    Type: Application
    Filed: October 5, 2010
    Publication date: May 19, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John E. Epler, Michael R. Krames, James G. Neff, Stefano Schiaffino
  • Publication number: 20110097833
    Abstract: A semiconductor light emitting device comprises a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer is adapted to emit first light having a first peak wavelength. A first wavelength converting material is adapted to absorb the first light and emit second light having a second peak wavelength. A second wavelength converting material is adapted to absorb either the first light or the second light and emit third light having a third peak wavelength. A filter is adapted to reflect fourth light having a fourth peak wavelength. The fourth light is either a portion of the second light or a portion of the third light. The filter is configured to transmit light having a peak wavelength longer or shorter than the fourth peak wavelength. The filter is disposed over the light emitting device in the path of at least a portion of the first, second, and third light.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventor: Michael R. Krames
  • Publication number: 20110084293
    Abstract: A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 14, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Regina B. Mueller-Mach, Gerd O. Mueller, Michael R. Krames, Peter J. Schmidt, Hans-Helmut Bechtel
  • Publication number: 20110084301
    Abstract: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 14, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John Epler, Paul S. Martin, Michael R. Krames
  • Patent number: 7902564
    Abstract: A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: March 8, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Regina B. Mueller-Mach, Gerd O. Mueller, Michael R. Krames, Peter J. Schmidt, Hans-Helmut Bechtel
  • Patent number: 7888691
    Abstract: A semiconductor light emitting device comprises a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer is adapted to emit first light having a first peak wavelength. A first wavelength converting material is adapted to absorb the first light and emit second light having a second peak wavelength. A second wavelength converting material is adapted to absorb either the first light or the second light and emit third light having a third peak wavelength. A filter is adapted to reflect fourth light having a fourth peak wavelength. The fourth light is either a portion of the second light or a portion of the third light. The filter is configured to transmit light having a peak wavelength longer or shorter than the fourth peak wavelength. The filter is disposed over the light emitting device in the path of at least a portion of the first, second, and third light.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 15, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventor: Michael R. Krames