Patents by Inventor Michael R Krames

Michael R Krames has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110027975
    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Application
    Filed: September 22, 2010
    Publication date: February 3, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Michael R. Krames, Nathan F. Gardner, John E. Epler
  • Patent number: 7880186
    Abstract: In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm?3 and 5×1019 cm?3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm?3.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 1, 2011
    Assignees: Koninklijke Phllips Electronics N.V., Phillips Lumileds Lighting Company, LLC
    Inventors: Nathan F. Gardner, Gangyi Chen, Werner K. Goetz, Michael R. Krames, Gerd O. Mueller, Yu-Chen Shen, Satoshi Watanabe
  • Patent number: 7875984
    Abstract: A compliant bonding structure is disposed between a semiconductor light emitting device and a mount. When the semiconductor light emitting device is attached to the mount, for example by providing pressure, heat, and/or ultrasonic energy to the semiconductor light emitting device, the compliant bonding structure collapses to partially fill a space between the semiconductor light emitting device and the mount. In some embodiments, the compliant bonding structure is plurality of metal bumps that undergo plastic deformation during bonding. In some embodiments, the compliant bonding structure is a porous metal layer.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 25, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: John E. Epler, Michael R. Krames, James G. Neff
  • Patent number: 7875533
    Abstract: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: January 25, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumilieds Lighting Co., LLC
    Inventors: John E. Epler, Paul S. Martin, Michael R. Krames
  • Publication number: 20110012147
    Abstract: A semiconductor structure comprises a light emitting layer disposed between an n-type region and a p-type region. A wavelength converting material is disposed over the semiconductor structure. The wavelength converting material is configured to absorb light emitted by the semiconductor structure and emit light of a different wavelength. A filter configured to reflect blue ambient light is disposed over the wavelength converting material. A scattering structure is disposed over the wavelength converting layer. The scattering structure is configured to scatter light. In some embodiments, the scattering structure is a transparent material having a rough surface, containing non-wavelength-converting particles that appear substantially white in ambient light, or including both a rough surface and white particles.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Serge J. Bierhuizen, Michael R. Krames
  • Patent number: 7863631
    Abstract: To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: January 4, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Michael R. Krames, Nathan F. Gardner, Frank M. Steranka
  • Publication number: 20100295090
    Abstract: A mount for a semiconductor device includes a carrier, at least two metal leads disposed on a bottom surface of the carrier, and a cavity extending through a thickness of the carrier to expose a portion of the top surfaces of the metal leads. A semiconductor light emitting device is positioned in the cavity and is electrically and physically connected to the metal leads. The carrier may be, for example, silicon, and the leads may be multilayer structures, for example a thin gold layer connected to a thick copper layer.
    Type: Application
    Filed: August 4, 2010
    Publication date: November 25, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: M. George CRAFORD, Michael R. KRAMES
  • Publication number: 20100289044
    Abstract: A white light LED is described that uses an LED die that emits visible blue light in a wavelength range of about 450-470 nm. A red phosphor or quantum dot material converts some of the blue light to a visible red light having a peak wavelength between about 605-625 nm with a full-width-half-maximum (FWHM) less than 80 nm. A green phosphor or quantum dot material converts some of the blue light to a green light having a FWHM greater than 40 nm, wherein the combination of the blue light, red light, and green light produces a white light providing a color rendering of Ra,8>90 and a color temperature of between 2500K-5000K. Preferably, the red and green converting material do not saturate with an LED die output of 100 W/cm2 and can reliably operate with an LED die junction temperature over 100 degrees C.
    Type: Application
    Filed: May 12, 2009
    Publication date: November 18, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael R. KRAMES, Gerd O. MUELLER, Regina B. MUELLER-MACH, Hans-Helmut BECHTEL, Peter J. SCHMIDT
  • Publication number: 20100264454
    Abstract: In accordance with embodiments of the invention, at least partial strain relief in a light emitting layer of a III-nitride light emitting device is provided by configuring the surface on which at least one layer of the device grows such that the layer expands laterally and thus at least partially relaxes. This layer is referred to as the strain-relieved layer. In some embodiments, the light emitting layer itself is the strain-relieved layer, meaning that the light emitting layer is grown on a surface that allows the light emitting layer to expand laterally to relieve strain. In some embodiments, a layer grown before the light emitting layer is the strain-relieved layer. In a first group of embodiments, the strain-relieved layer is grown on a textured surface.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 21, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Sungsoo YI, Nathan F. GARDNER, Michael R. KRAMES, Linda T. ROMANO
  • Patent number: 7808011
    Abstract: A semiconductor light emitting device includes an in-plane active region that emits linearly-polarized light. An in-plane active region may include, for example, a {11 20} or {10 10} InGaN light emitting layer. In some embodiments, a polarizer oriented to pass light of a polarization of a majority of light emitted by the active region serves as a contact. In some embodiments, two active regions emitting the same or different colored light are separated by a polarizer oriented to pass light of a polarization of a majority of light emitted by the bottom active region, and to reflect light of a polarization of a majority of light emitted by the top active region. In some embodiments, a polarizer reflects light scattered by a wavelength converting layer.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: October 5, 2010
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lights Co., LLC
    Inventors: James C. Kim, John E. Epler, Nathan F. Gardner, Michael R. Krames, Jonathan J. Wierer, Jr.
  • Patent number: 7804100
    Abstract: A device structure includes a III-nitride wurtzite semiconductor light emitting region disposed between a p-type region and an n-type region. A bonded interface is disposed between two surfaces, one of the surfaces being a surface of the device structure. The bonded interface facilitates an orientation of the wurtzite c-axis in the light emitting region that confines carriers in the light emitting region, potentially increasing efficiency at high current density.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 28, 2010
    Assignees: Philips Lumileds Lighting Company, LLC, Koninklijke Philips Electronics N.V.
    Inventors: Jonathan J. Wierer, Jr., M. George Craford, John E. Epler, Michael R. Krames
  • Publication number: 20100224902
    Abstract: A compliant bonding structure is disposed between a semiconductor light emitting device and a mount. When the semiconductor light emitting device is attached to the mount, for example by providing pressure, heat, and/or ultrasonic energy to the semiconductor light emitting device, the compliant bonding structure collapses to partially fill a space between the semiconductor light emitting device and the mount. In some embodiments, the compliant bonding structure is plurality of metal bumps that undergo plastic deformation during bonding. In some embodiments, the compliant bonding structure is a porous metal layer.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 9, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John E. Epler, Michael R. Krames, James G. Neff
  • Publication number: 20100226404
    Abstract: A semiconductor light emitting device includes an in-plane active region that emits linearly-polarized light. An in-plane active region may include, for example, a {11 20} or {10 10} InGaN light emitting layer. In some embodiments, a polarizer oriented to pass light of a polarization of a majority of light emitted by the active region serves as a contact. In some embodiments, two active regions emitting the same or different colored light are separated by a polarizer oriented to pass light of a polarization of a majority of light emitted by the bottom active region, and to reflect light of a polarization of a majority of light emitted by the top active region. In some embodiments, a polarizer reflects light scattered by a wavelength converting layer.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: James C. Kim, John E. Epler, Nathan F. Gardner, Michael R. Krames, Jonathan J. Wierer, JR.
  • Patent number: 7791096
    Abstract: A mount for a semiconductor device includes a carrier, at least two metal leads disposed on a bottom surface of the carrier, and a cavity extending through a thickness of the carrier to expose a portion of the top surfaces of the metal leads. A semiconductor light emitting device is positioned in the cavity and is electrically and physically connected to the metal leads. The carrier may be, for example, silicon, and the leads may be multilayer structures, for example a thin gold layer connected to a thick copper layer.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 7, 2010
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: M. George Craford, Michael R. Krames
  • Publication number: 20100200886
    Abstract: Embodiments of the invention include a light emitting structure comprising a light emitting layer. A first luminescent material comprising a phosphor is disposed in a path of light emitted by the light emitting layer. A second luminescent material comprising a semiconductor is also disposed in a path of light emitted by the light emitting layer. The second luminescent material is configured to absorb light emitted by the light emitting layer and emit light of a different wavelength. In some embodiments, one of the first and second luminescent materials may be bonded to the semiconductor structure.
    Type: Application
    Filed: March 15, 2010
    Publication date: August 12, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Michael R. Krames, Gerd O. Mueller
  • Publication number: 20100176490
    Abstract: Methods of fabricating relaxed layers of semiconductor materials include forming structures of a semiconductor material overlying a layer of a compliant material, and subsequently altering a viscosity of the compliant material to reduce strain within the semiconductor material. The compliant material may be reflowed during deposition of a second layer of semiconductor material. The compliant material may be selected so that, as the second layer of semiconductor material is deposited, a viscosity of the compliant material is altered imparting relaxation of the structures. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Methods of fabricating semiconductor structures and devices are also disclosed. Novel intermediate structures are formed during such methods.
    Type: Application
    Filed: September 21, 2009
    Publication date: July 15, 2010
    Inventors: Fabrice LETERTRE, Bruce FAURE, Michael R. Krames, Nathan F. GARDNER
  • Publication number: 20100148151
    Abstract: A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Publication number: 20100109568
    Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 6, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael D. CAMRAS, William R. IMLER, Franklin J. WALL, JR., Frank M. STERANKA, Michael R. KRAMES, Helena TICHA, Ladislav TICHY, Robertus G. Alferink
  • Publication number: 20100109030
    Abstract: LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael R. KRAMES, John E. EPLER, Daniel A. STEIGERWALD, Tal MARGALITH
  • Publication number: 20100072489
    Abstract: A plurality of III-nitride semiconductor structures, each comprising a light emitting layer disposed between an n-type region and a p-type region, are grown on a composite substrate. The composite substrate includes a plurality of islands of III-nitride material connected to a host by a bonding layer. The plurality of III-nitride semiconductor structures are grown on the III-nitride islands. The composite substrate may be formed such that each island of III-nitride material is at least partially relaxed. As a result, the light emitting layer of each semiconductor structure has an a-lattice constant greater than 3.19 angstroms.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Melvin B. MCLAURIN, Michael R. KRAMES