Patents by Inventor Minoru Honda

Minoru Honda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8308847
    Abstract: Provided is a filter for removing a sulfur-containing-gas (1), which removes the sulfur-containing-gas by being brought into contact with the sulfur-containing-gas in a gas flow path, the filter including a former filter (11) disposed on an upstream side of the gas flow path, and a latter filter (12) disposed on a downstream side of the gas flow path, wherein the former filter (11) includes a first material for removing a sulfur-containing-gas, the first material including a porous support, and iodine which is supported on the porous support, and is produced by catalytic pyrolysis of ammonium iodide at a thermal decomposition ratio of 80% or more by use of the porous support as a catalyst, and the latter filter (12) includes a second material for removing a sulfur-containing-gas, the second material including an activated carbon fiber, and an alkali component which is supported on the activated carbon fiber.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: November 13, 2012
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventors: Kazuhiro Fukumoto, Minoru Takahara, Kenichirou Suzuki, Nobuhiko Nakagaki, Yasunari Arai, Minoru Honda
  • Patent number: 8258571
    Abstract: The invention provides a MOS semiconductor memory device that achieves excellent data retention characteristics while also achieving high-speed data write performance, low-power operation performance, and high reliability. A MOS semiconductor memory device 601 includes a first insulating film 111 and fifth insulating film 115 having large bandgaps 111a and 115a, a third insulating film 113 having the smallest bandgap 113a, and a second insulating film 112 and fourth insulating film 114 interposed between the third insulating film 113 and the first and fifth insulating films 111 and 115, respectively, and having intermediate bandgaps 112a and 114a.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 4, 2012
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Tetsuo Endoh, Masayuki Kohno, Tatsuo Nishita, Minoru Honda, Toshio Nakanishi, Yoshihiro Hirota
  • Patent number: 8247331
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface; a step of performing first nitriding to the silicon exposed on the surface of the substrate, and forming a silicon nitride film having a thickness of 0.2 nm but not more than 1 nm on the surface of the substrate; and a step of performing first heat treatment to the silicon nitride film in N2O atmosphere and forming a silicon nitride film. This method may further include a step of performing second nitriding to the silicon oxynitride film, and furthermore, may include a step of performing second heat treatment to the silicon oxynitride film after the second nitriding.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 21, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Publication number: 20120208376
    Abstract: A method of forming a silicon nitride film by using a plasma CVD method, where the silicon nitride film has abundant traps and is useful as a charge accumulation layer of a nonvolatile semiconductor memory device. A silicon nitride film having a lot of traps is formed by performing plasma CVD by using processing gases including a nitrogen gas and a gas of a compound formed of silicon atoms and chlorine atoms, and by setting a pressure in a processing container within a range between more than or equal to 0.1 Pa and less than or equal to 8 Pa, in a plasma CVD apparatus that performs film-formation by introducing microwaves in the processing container by using a planar antenna having a plurality of holes to generate plasma.
    Type: Application
    Filed: September 28, 2010
    Publication date: August 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Masayuki Kohno, Toshio Nakanishi
  • Publication number: 20120153442
    Abstract: Provided is a process of forming a silicon nitride film having concentration of hydrogen atoms below or equal to 9.9×1020 atoms/cm3 in the silicon nitride film by using a plasma CVD device, which generates plasma by introducing microwaves into a process chamber by using a planar antenna having a plurality of apertures, by setting the pressure inside a process chamber within a range from 0.1 Pa to 6.7 Pa and by performing a plasma CVD by using a raw material gas for film formation including SiCl4 gas and nitrogen gas.
    Type: Application
    Filed: June 20, 2011
    Publication date: June 21, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Masayuki Kohno
  • Publication number: 20120126376
    Abstract: To produce a silicon dioxide film having concentration of hydrogen atoms below or equal to 9.9×1020 atoms/cm3 in the silicon dioxide film, as measured by using secondary ion mass spectrometry (SIMS), a plasma CVD, which generate plasma by introducing microwaves into a process chamber by using a planar antenna having a plurality of apertures and forms a film, is performed by setting the pressure inside the process chamber within a range from 0.1 Pa to 6.7 Pa and by using a gas of a compound composed of silicon atoms and chlorine atoms and an oxygen containing gas.
    Type: Application
    Filed: September 29, 2009
    Publication date: May 24, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Junya Miyahara
  • Patent number: 8158535
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface, a step of performing oxidizing to the silicon on the surface, and forming a silicon oxide thin film on the surface of the silicon, a step of performing first nitriding to the silicon oxide film and the base silicon thereof, and forming a silicon oxynitride film, and a step of performing first heat treatment to the silicon oxynitride film in N2O atmosphere. In such method, a step of performing second nitriding to the silicon oxynitride film may be further included after the first heat treatment, and furthermore, a step of performing second heat treatment to the silicon oxynitride film after the second nitriding may be included.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 17, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Patent number: 8124484
    Abstract: To manufacture a MOS memory device having a dielectric film laminate in which adjacent dielectric films have band-gaps of different magnitudes, a plasma processing device which transmits microwaves to a chamber by means of a planar antenna having a plurality of holes is used to perform plasma CVD under pressure conditions that differ from at least pressure conditions used when forming the adjacent dielectric films, and the dielectric films are sequentially formed by altering the band-gaps of the adjacent dielectric films that constitute the dielectric film laminate.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 28, 2012
    Assignees: Tohoku University, Tokyo Electron Limited
    Inventors: Tetsuo Endoh, Masayuki Kohno, Syuichiro Otao, Minoru Honda, Toshio Nakanishi
  • Patent number: 8119545
    Abstract: Provided is a plasma CVD device. In the plasma CVD device, in producing a silicon nitride film while controlling the size of a band gap by CVD, microwaves are introduced into a treatment vessel by a flat antenna having a plurality of holes. The plasma CVD is carried out under a given treatment pressure selected from a pressure range of not less than 0.1 Pa and not more than 1333 Pa at a flow ratio between a silicon-containing compound gas and a nitrogen gas (silicon-containing compound gas flow rate/nitrogen gas flow rate) selected from a range of not less than 0.005 and not more than 0.2, whereby the Si/N ratio in the film is controlled to form a silicon nitride film having a band gap size of not less than 2.5 eV and not more than 7 eV.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 21, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Tatsuo Nishita, Junya Miyahara
  • Publication number: 20110254078
    Abstract: Provided is a method for depositing a silicon nitride film in a plasma CVD device which introduces microwaves into a process chamber by a planar antenna having a plurality of apertures, and the method including setting the pressure in the process chamber within a range from 10 Pa to 133.3 Pa and performing plasma CVD by using film formation gas including a silicon containing compound gas and a nitrogen gas while applying an RF bias to the wafer by supplying high-frequency power with an output density within a range from 0.009 W/cm2 to 0.64 W/cm2 per unit area of a wafer from a high frequency power supply to an electrode in a holding stage on which the wafer is arranged.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 20, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru HONDA, Masayuki KOHNO
  • Publication number: 20110206590
    Abstract: To form a dense high-quality silicon oxide film (SiO2 film or SiON film) having excellent insulating properties and an etching rate below or equal to 0.11 nm/s when using a 0.5% dilute hydrofluoric acid solution, plasma CVD is performed by setting a pressure within the processing container in the range from 0.1 Pa to 6.7 Pa. and using a process gas containing an SiCl4 gas or an Si2H6 gas, and an oxygen gas, in a plasma CVD apparatus in which plasma is generated by introducing microwaves into a processing container through a planar antenna having a plurality of holes.
    Type: Application
    Filed: September 30, 2009
    Publication date: August 25, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Junya Miyahara
  • Publication number: 20110189862
    Abstract: Provided is a process of forming a silicon oxynitride film having concentration of hydrogen atoms below or equal to 9.9×1020 atoms/cm3 as measured by using secondary ion mass spectrometry (SIMS), using a plasma CVD device, which generates plasma by introducing microwaves into a process chamber by using a planar antenna having a plurality of apertures, by setting a pressure inside the process chamber within a range from 0.1 Pa to 6.7 Pa, and performing plasma CVD by using process gases including SiCl4 gas, nitrogen gas, and oxygen gas.
    Type: Application
    Filed: September 29, 2009
    Publication date: August 4, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Tatsuo Nishita, Junya Miyahara, Masayuki Kohno
  • Patent number: 7968470
    Abstract: A nitriding process is performed at a process temperature of 500° C. or more by causing microwave-excited high-density plasma of a nitrogen-containing gas to act on silicon in the surface of a target object, inside a process container of a plasma processing apparatus. The plasma is generated by supplying microwaves into the process container from a planar antenna having a plurality of slots.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: June 28, 2011
    Assignees: Tohoku University, Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Minoru Honda, Toshio Nakanishi
  • Patent number: 7960293
    Abstract: A method for forming an insulating film includes forming a silicon nitride film on a silicon surface by subjecting a target substrate wherein silicon is exposed in the surface to a treatment for nitriding the silicon, forming a silicon oxynitride film by heating the target substrate provided with the silicon nitride film in an N2O atmosphere, and nitriding the silicon oxynitride film.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: June 14, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Publication number: 20110086485
    Abstract: To manufacture a MOS semiconductor memory device having an insulating film laminate in which adjacent insulating films have band-gaps of different sizes, a plasma processing device which transmits microwaves to a chamber by means of a planar antenna having a plurality of holes is used to perform plasma CVD under pressure conditions that differ from at least pressure conditions used when forming the adjacent insulating films, and the insulating films are sequentially formed by altering the band-gaps of the adjacent insulating films that constitute the insulating film laminate.
    Type: Application
    Filed: March 30, 2009
    Publication date: April 14, 2011
    Applicants: TOKYO ELECTRON LIMITED, TOHOKU UNIVERSITY
    Inventors: Tetsuo Endoh, Masayuki Kohno, Syuichiro Otao, Minoru Honda, Toshio Nakanishi
  • Publication number: 20110086517
    Abstract: Disclosed is a plasma CVD device. In the plasma CVD device, in producing a silicon nitride film while controlling the size of a band gap by CVD, microwaves are introduced into a treatment vessel by a flat antenna having a plurality of holes. The plasma CVD is carried out under a given treatment pressure selected from a pressure range of not less than 0.1 Pa and not more than 1333 Pa at a flow ratio between a silicon-containing compound gas and a nitrogen gas (silicon-containing compound gas flow rate/nitrogen gas flow rate) selected from a range of not less than 0.005 and not more than 0.2, whereby the Si/N ratio in the film is controlled to form a silicon nitride film having a band gap size of not less than 2.5 eV and not more than 7 eV.
    Type: Application
    Filed: March 30, 2009
    Publication date: April 14, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Tatsuo Nishita, Junya Miyahara
  • Publication number: 20100323529
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface; a step of performing first nitriding to the silicon exposed on the surface of the substrate, and forming a silicon nitride film having a thickness of 0.2 nm but not more than 1 nm on the surface of the substrate; and a step of performing first heat treatment to the silicon nitride film in N2O atmosphere and forming a silicon nitride film. This method may further include a step of performing second nitriding to the silicon oxynitride film, and furthermore, may include a step of performing second heat treatment to the silicon oxynitride film after the second nitriding.
    Type: Application
    Filed: December 20, 2007
    Publication date: December 23, 2010
    Applicant: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Publication number: 20100323531
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface, a step of performing oxidizing to the silicon on the surface, and forming a silicon oxide thin film on the surface of the silicon, a step of performing first nitriding to the silicon oxide film and the base silicon thereof, and forming a silicon oxynitride film, and a step of performing first heat treatment to the silicon oxynitride film in N2O atmosphere. In such method, a step of performing second nitriding to the silicon oxynitride film may be further included after the first heat treatment, and furthermore, a step of performing second heat treatment to the silicon oxynitride film after the second nitriding may be included.
    Type: Application
    Filed: December 20, 2007
    Publication date: December 23, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Publication number: 20100283097
    Abstract: The invention provides a MOS semiconductor memory device that achieves excellent data retention characteristics while also achieving high-speed data write performance, low-power operation performance, and high reliability. A MOS semiconductor memory device 601 includes a first insulating film 111 and fifth insulating film 115 having large bandgaps 111a and 115a, a third insulating film 113 having the smallest bandgap 113a, and a second insulating film 112 and fourth insulating film 114 interposed between the third insulating film 113 and the first and fifth insulating films 111 and 115, respectively, and having intermediate bandgaps 112a and 114a.
    Type: Application
    Filed: June 20, 2008
    Publication date: November 11, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tetsuo Endoh, Masayuki Kohno, Tatsuo Nishita, Minoru Honda, Toshio Nakanishi, Yoshihiro Hirota
  • Patent number: 7820557
    Abstract: In a substrate nitriding method for nitriding a target substrate by allowing a nitrogen-containing plasma to act on silicon on a surface of the substrate in a processing chamber of a plasma processing apparatus, the nitridation by the nitrogen-containing plasma is performed by controlling a sheath voltage Vdc around the substrate to be less than or equal to about 3.5 eV. The sheath voltage Vdc is a potential difference Vp?Vf between a plasma potential Vp in a plasma generating region and a floating potential Vf of the substrate.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 26, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Toshio Nakanishi