Patents by Inventor Nicolas Loubet

Nicolas Loubet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004750
    Abstract: Methods for forming semiconductor devices are disclosed including forming a semiconductor structure having a semiconductor substrate containing two or more fins. The method includes etching a first optical planarization layer on the semiconductor structure exposing a top surface of each of a gate spacer, a gate cap layer and a portion of a source/drain contact adjacent to the exposed gate spacer to form a first gate contact opening. The method further includes depositing a sacrificial place-holder material in the first gate contact opening. The method further includes removing the first optical planarization layer. The method further includes recessing a first conductive material.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 11, 2021
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Chanro Park, Balasubramanian Pranatharthiharan, Nicolas Loubet
  • Patent number: 10998234
    Abstract: Embodiments of the present invention are directed to a method that prevents punch-through of a bottom isolation layer and improves the quality of the source/drain epitaxial growth in a nanosheet semiconductor structure. In a non-limiting embodiment of the invention, a bottom isolation structure is formed over a substrate. The bottom isolation structure includes a tri-layer stack in a first region of the substrate and a bi-layer stack in a second region of the substrate. A nanosheet stack is formed over the bottom isolation structure in the first region of the substrate. A gate is formed over a channel region of the nanosheet stack.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Veeraraghavan Basker, Nicolas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 10991808
    Abstract: Fabricating a steep-switch transistor includes receiving a semiconductor structure including a substrate, a fin disposed on the substrate, a source/drain disposed on the substrate adjacent to the fin, a gate disposed upon the fin, a cap disposed on the gate, a trench contact formed on and in contact with the source/drain, and a source/drain contact formed on an in contact with the trench contact. A recess is formed in a portion of the source/drain contact using a recess patterning process. A bi-stable resistive system (BRS) material is deposited in the recess in contact with the portion of the source/drain contact. A metallization layer is formed in contact upon the BRS material, a portion of the source/drain contact, the BRS material, and a portion of the metallization layer contact forming a reversible switch.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julien Frougier, Nicolas Loubet, Ruilong Xie, Daniel Chanemougame, Ali Razavieh, Kangguo Cheng
  • Publication number: 20210111225
    Abstract: Fabricating a steep-switch transistor includes receiving a semiconductor structure including a substrate, a fin disposed on the substrate, a source/drain disposed on the substrate adjacent to the fin, a gate disposed upon the fin, a cap disposed on the gate, and a trench extending to the source/drain. A trench contact is formed in the trench in contact with the source/drain. A recess is formed in a portion of the trench contact below a top surface of the cap using a recess patterning process. A bi-stable resistive system (BRS) material is deposited in the recess in contact with the portion of the trench contact. A source/drain contact is formed upon the BRS material, a portion of the trench contact, the BRS material, and a portion of the source/drain contact forming a reversible switch.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Applicant: International Business Machines Corporation
    Inventors: Julien Frougier, NICOLAS LOUBET, Ruilong Xie, Daniel Chanemougame, Ali Razavieh, Kangguo Cheng
  • Publication number: 20210111077
    Abstract: A method of forming a semiconductor structure includes forming a semiconductor layer stack including a substrate and a nanosheet channel stack including alternating layers of a sacrificial material and a semiconducting material providing nanosheet channels for nanosheet field-effect transistors. The method also includes forming vertical fins in the semiconductor layer stack, forming a liner on sidewalls of the vertical fins, and forming a sacrificial epitaxial layer over the substrate surrounding the vertical fins. The method further includes replacing the sacrificial epitaxial layer with a first dielectric layer, removing the liner to form air gaps between the first dielectric layer and sidewalls of the vertical fins, and forming a second dielectric layer in the air gaps between the first dielectric layer and sidewalls of the vertical fins. The first and second dielectric layers provide shallow trench isolation regions surrounding sidewalls of the vertical fins below the nanosheet channel stack.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Nicolas Loubet, Richard A. Conti, ChoongHyun Lee
  • Patent number: 10964750
    Abstract: Fabricating a steep-switch transistor includes receiving a semiconductor structure including a substrate, a fin disposed on the substrate, a source/drain disposed on the substrate adjacent to the fin, a gate disposed upon the fin, a cap disposed on the gate, and a trench extending to the source/drain. A trench contact is formed in the trench in contact with the source/drain. A recess is formed in a portion of the trench contact below a top surface of the cap using a recess patterning process. A bi-stable resistive system (BRS) material is deposited in the recess in contact with the portion of the trench contact. A source/drain contact is formed upon the BRS material, a portion of the trench contact, the BRS material, and a portion of the source/drain contact forming a reversible switch.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julien Frougier, Nicolas Loubet, Ruilong Xie, Daniel Chanemougame, Ali Razavieh, Kangguo Cheng
  • Patent number: 10957799
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. The nanosheet stack can include one or more first semiconductor layers and one or more first sacrificial layers. A trench is formed by removing a portion of the one or more first semiconductor layers and the one or more first sacrificial layers. The trench exposes a surface of a bottommost sacrificial layer of the one or more first sacrificial layers. The trench can be filled with one or more second semiconductor layers and one or more second sacrificial layers such that each of the one or more second semiconductor layers is in contact with a sidewall of one of the one or more first semiconductor layers.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Julien Frougier, Chanro Park, Edward Nowak, Yi Qi, Kangguo Cheng, Nicolas Loubet
  • Publication number: 20210082770
    Abstract: Methods for forming semiconductor devices are disclosed including forming a semiconductor structure having a semiconductor substrate containing two or more fins. The method includes etching a first optical planarization layer on the semiconductor structure exposing a top surface of each of a gate spacer, a gate cap layer and a portion of a source/drain contact adjacent to the exposed gate spacer to form a first gate contact opening. The method further includes depositing a sacrificial place-holder material in the first gate contact opening. The method further includes removing the first optical planarization layer. The method further includes recessing a first conductive material.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Ruilong Xie, Chanro Park, Balasubramanian Pranatharthiharan, Nicolas Loubet
  • Publication number: 20210057414
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: Pierre MORIN, Nicolas LOUBET
  • Publication number: 20210050449
    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventors: Pierre MORIN, Nicolas LOUBET
  • Patent number: 10916627
    Abstract: A semiconductor device includes a plurality of nano sheet stacks disposed above a substrate. Each nanosheet stack has a first nanosheet and a first sacrificial layer, the first nanosheet and the first sacrificial layer each include a first end and a second end. The first end and the second end of the first sacrificial layer are recessed from the first and second ends of the first nanosheet. Each nanosheet stack has a bottom sacrificial layer formed on top of the substrate. The bottom sacrificial layer has a first end and a second end, which are recessed from the first and second ends of the first nanosheet. The semiconductor also has a source or drain (S/D) structures formed in contact with the first end and the second end of the first nanosheet. The S/D structures are isolated from the substrate by the bottom sacrificial layer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, Pietro Montanini
  • Publication number: 20210036156
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Nicolas LOUBET, Pierre MORIN
  • Patent number: 10910273
    Abstract: A method of forming a semiconductor structure includes forming a semiconductor layer stack including a substrate and a nanosheet channel stack including alternating layers of a sacrificial material and a semiconducting material providing nanosheet channels for nanosheet field-effect transistors. The method also includes forming vertical fins in the semiconductor layer stack, forming a liner on sidewalls of the vertical fins, and forming a sacrificial epitaxial layer over the substrate surrounding the vertical fins. The method further includes replacing the sacrificial epitaxial layer with a first dielectric layer, removing the liner to form air gaps between the first dielectric layer and sidewalls of the vertical fins, and forming a second dielectric layer in the air gaps between the first dielectric layer and sidewalls of the vertical fins. The first and second dielectric layers provide shallow trench isolation regions surrounding sidewalls of the vertical fins below the nanosheet channel stack.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Nicolas Loubet, Richard A. Conti, ChoongHyun Lee
  • Patent number: 10903369
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a non-planar channel region is formed having a first semiconductor layer, a second semiconductor layer, and a fin-shaped bridge layer between the first semiconductor layer and the second semiconductor layer. Forming the non-planar channel region can include forming a nanosheet stack over a substrate, forming a trench by removing a portion of the nanosheet stack, and forming a third semiconductor layer in the trench. Outer surfaces of the first semiconductor layer, the second semiconductor layer, and the fin-shaped bridge region define an effective channel width of the non-planar channel region.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Julien Frougier, Chanro Park, Edward Nowak, Yi Qi, Kangguo Cheng, Nicolas Loubet
  • Patent number: 10903315
    Abstract: A technique relates to a semiconductor device. A bottom sacrificial layer is formed on a substrate. A stack is formed over the bottom sacrificial layer and a dummy gate is formed over the stack. The bottom sacrificial layer is removed from under the stack so as to leave an opening. An isolation layer is formed in the opening, the isolation layer being positioned between the stack and the substrate.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, Robin Hsin Kuo Chao, Julien Frougier, Ruilong Xie
  • Patent number: 10903331
    Abstract: Embodiments of the invention are directed to a method of fabricating a field effect transistor device, wherein the fabrication operations include forming a channel region over a substrate, forming a gate region over a top surface and along sidewalls of the channel region, and forming a source or drain (S/D) region over the substrate. A bottom encapsulated air-gap is formed over the substrate, and a first portion of the bottom encapsulated air-gap is positioned between the gate region and the S/D region. The first portion of the bottom encapsulated air-gap is further positioned below the top surface of the channel region.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, Kangguo Cheng, Wenyu Xu, Julien Frougier
  • Publication number: 20210020743
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a nanosheet stack comprising one or more layers, wherein the one or more layers are induced with strain from a modified sacrificial gate. The semiconductor device also includes one or more merged S/D regions formed on exposed portions of the nanosheet stack, wherein the one or more merged S/D regions fix the strain of the one or more layers, and a conductive gate formed over the nanosheet stack, wherein the conductive gate replaces a modified sacrificial gate without impacting the strain induced in the one or more layers. Also provided are embodiments for a method for creating stress in the channel of a nanosheet transistor.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Nicolas Loubet, Tenko Yamashita, Guillaume Audoit, Nicolas Bernier, Remi Coquand, Shay Reboh
  • Patent number: 10872962
    Abstract: Fabricating a steep-switch transistor includes receiving a semiconductor structure including a substrate, a fin disposed on the substrate, a plurality of source/drains disposed on the substrate adjacent to the fin, a gate disposed upon the fin, a cap disposed on the gate, and a plurality of trenches, each trench extending to a corresponding one of the plurality of source/drains. A trench contact is formed in each of the trenches in contact with the corresponding source/drain. A recess is formed in a portion of each trench contact below a top surface of the cap. A bi-stable resistive system (BRS) material is deposited in each recess in contact with the portion of the trench contact. A source/drain contact is formed upon the BRS material, a portion of the trench contact, the BRS material, and a portion of the source/drain contact forming a reversible switch for each of the corresponding source/drains.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: December 22, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julien Frougier, Nicolas Loubet, Ruilong Xie, Daniel Chanemougame, Ali Razavieh, Kangguo Cheng
  • Patent number: 10854606
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: December 1, 2020
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Pierre Morin, Nicolas Loubet
  • Patent number: 10854750
    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 1, 2020
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Pierre Morin, Nicolas Loubet