Patents by Inventor Paul Farrar

Paul Farrar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7157387
    Abstract: One aspect of the present subject matter relates to a method for forming an interlayer dielectric (ILD). In various embodiments of the method, an insulator layer is formed, at least one trench is formed in the insulator layer, and a metal layer is formed in the at least one trench. After the metal layer is formed, voids are formed in the insulator layer. One aspect of the present subject matter relates to an integrated circuit. In various embodiments, the integrated circuit includes an insulator structure having a plurality of voids that have a maximum size, and a metal layer formed in the insulator structure. The maximum size of the voids is larger than the minimum photo dimension of the metal layer such that a maximum-sized void is capable of extending between a first and second metal line in the metal layer. Other aspects are provided herein.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: January 2, 2007
    Assignee: Micron Technologies, Inc.
    Inventors: Arup Bhattacharyya, Paul A. Farrar
  • Patent number: 7158399
    Abstract: Digital data apparatuses and digital data operational methods are described.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: January 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Publication number: 20060289990
    Abstract: Devices and methods are described including a multi-chip assembly. Embodiments of multi-chip assemblies are provided that uses both lateral connection structures and through chip connection structures. One advantage of this design includes an increased number of possible connections. Another advantage of this design includes shorter distances for interconnection pathways, which improves device performance and speed.
    Type: Application
    Filed: July 20, 2006
    Publication date: December 28, 2006
    Inventor: Paul Farrar
  • Publication number: 20060289033
    Abstract: Devices and methods of cleaning are described. The methods, and devices formed by the methods have a number of advantages. Embodiments are shown that include cleaning using a supercritical fluid. Advantages include a combination of both chemical and mechanical removal abilities from the supercritical fluid. Mechanical energy for cleaning is transmitted in a homogenous manner throughout a carrier fluid. The mechanical energy provided in methods shown also can also be used with delicate surface features.
    Type: Application
    Filed: July 20, 2006
    Publication date: December 28, 2006
    Inventor: Paul Farrar
  • Publication number: 20060292858
    Abstract: One aspect of the present subject matter relates to a method for forming an interlayer dielectric (ILD). In various embodiments of the method, an insulator layer is formed, at least one trench is formed in the insulator layer, and a metal layer is formed in the at least one trench. After the metal layer is formed, voids are formed in the insulator layer. One aspect of the present subject matter relates to an integrated circuit. In various embodiments, the integrated circuit includes an insulator structure having a plurality of voids that have a maximum size, and a metal layer formed in the insulator structure. The maximum size of the voids is larger than the minimum photo dimension of the metal layer such that a maximum-sized void is capable of extending between a first and second metal line in the metal layer. Other aspects are provided herein.
    Type: Application
    Filed: July 26, 2006
    Publication date: December 28, 2006
    Inventors: Arup Bhattacharyya, Paul Farrar
  • Publication number: 20060284284
    Abstract: A method for epitaxially forming a first semiconductor structure attached to a second semiconductor structure is provided. Devices and methods described include advantages such as reduced lattice mismatch at an epitaxial interface between two different semiconductor materials. One advantageous application of such an interface includes an electrical-optical communication structure. Methods such as deposition of layers at an elevated temperature provide easy formation of semiconductor structures with a modified lattice constant that permits an improved epitaxial interface.
    Type: Application
    Filed: July 6, 2006
    Publication date: December 21, 2006
    Inventor: Paul Farrar
  • Publication number: 20060278990
    Abstract: An interconnect structure with a plurality of low dielectric constant insulating layers acting as etch stops is disclosed. The low dielectric constant materials act as insulating layers through which trenches and vias are subsequently formed by employing a timed etching. Since the low dielectric constant materials are selected so that the etchant available for each one has only a small etch rate relative to the other low dielectric constant materials, the plurality of low dielectric constant materials act as etch stops during the fabrication of interconnect structures. This way, the etch stop layers employed in the prior art are eliminated and the number of fabrication steps is reduced.
    Type: Application
    Filed: April 19, 2006
    Publication date: December 14, 2006
    Inventor: Paul Farrar
  • Publication number: 20060262592
    Abstract: Digital data apparatuses and digital data operational methods are described.
    Type: Application
    Filed: July 27, 2006
    Publication date: November 23, 2006
    Inventor: Paul Farrar
  • Publication number: 20060261484
    Abstract: Various apparatus and systems include foamed polynorbornene insulating material. The foamed polynorbornene material may provide electrical insulation between conductive layers of an integrated circuit device.
    Type: Application
    Filed: July 25, 2006
    Publication date: November 23, 2006
    Inventor: Paul Farrar
  • Publication number: 20060255462
    Abstract: Disclosed structures and methods inhibit atomic migration and related capacitive-resistive effects between a metallization layer and an insulator layer in a semiconductor structure. One exemplary structure includes an inhibiting layer between an insulator and a metallization layer. The insulator includes a polymer or an insulating oxide compound. And, the inhibiting layer has a compound formed from a reaction between the polymer or insulating oxide compound and a transition metal, a representative metal, or a metalloid.
    Type: Application
    Filed: July 18, 2006
    Publication date: November 16, 2006
    Inventor: Paul Farrar
  • Publication number: 20060254612
    Abstract: A method for removing polar fluids from the surface of a substrate using a supercritical fluid is described. Substrates that may be cleaned include microelectronic devices such as integrated circuits, micro-electro mechanical devices, and optoelectronic devices. The surfaces of these devices may include foamed polymers, such as those used as dielectric material. Supercritical fluids useful for removal of polar fluids generally include an oxygen-containing organic compound in the supercritical state. The removal of polar fluids using supercritical fluids may be supplemented by other cleaning methods using supercritical fluids to remove particulate matter from the surface of the substrate.
    Type: Application
    Filed: May 16, 2005
    Publication date: November 16, 2006
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Paul Farrar
  • Publication number: 20060252350
    Abstract: Chemical mechanical polishing (CMP) systems and methods are provided herein. One aspect of the present subject matter is a polishing system. One polishing system embodiment includes a platen adapted to receive a wafer, and a polishing pad drum that has a cylindrical, or generally cylindrical, shape with a length and an axis of rotation along the length. The polishing pad drum is adapted to rotate about the axis of rotation along the drum length. The polishing pad drum, the platen, or both the polishing pad drum and the platen are adapted to be linearly moved to polish the surface of the wafer using the rotating polishing pad drum. The polishing pad drum and the platen are adapted to be operably positioned a predetermined minimum distance from each other as the polishing pad drum and the platen pass each other due the linear motion.
    Type: Application
    Filed: July 12, 2006
    Publication date: November 9, 2006
    Inventor: Paul Farrar
  • Publication number: 20060249837
    Abstract: A method and device for cooling an integrated circuit is provided. A method and device using a gas to cool circuit structures such as a number of air bridge structures is provided. A method and device using a boiling liquid to cool circuit structures is provided. Further provided is a method of controlling chip temperature. This allows circuit and device designers an opportunity to design more efficient structures. Some properties that exhibit less variation when temperature ranges are controlled include electromigration, conductivity, operating speed, and reliability.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 9, 2006
    Inventors: Paul Farrar, Leonard Forbes, Kie Ahn, Joseph Geusic, Arup Bhattacharyya, Alan Reinberg
  • Patent number: 7132348
    Abstract: Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure. One embodiment includes a solid structure of an insulator material, and a precisely determined arrangement of at least one void formed within the solid structure which lowers an effective dielectric constant of the insulator structure. One aspect is a method of forming a low-k insulator structure. In one embodiment, an insulator material is deposited, and a predetermined arrangement of at least one hole is formed in a surface of the insulator material. The insulator material is annealed such that the low-k dielectric material undergoes a surface transformation to transform the arrangement of at least one hole into predetermined arrangement of at least one empty space below the surface of the insulator material. Other aspects are provided herein.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Paul A. Farrar, Arup Bhattacharyya
  • Publication number: 20060244112
    Abstract: A circuit assembly for fabricating an air bridge structure and a method of fabricating an integrated circuit package capable of supporting a circuit assembly including an air bridge structure. A circuit assembly comprises an electronic chip and a conductive structure embedded in a plurality of materials having a plurality of vaporization temperatures. The plurality of materials is formed on the electronic chip and the conductive structure is coupled to the electronic chip. To fabricate the circuit assembly, a support structure that may include post structures is formed on an electronic chip. Interstices of the support structure are filled with a material having a vaporization temperature that is less than the vaporization temperature of the support structure. Conductive structures are embedded in the support structure and the material, and a connective structure is mounted on the support structure. Finally, the material is removed from the interstices by heating the circuit assembly.
    Type: Application
    Filed: July 12, 2006
    Publication date: November 2, 2006
    Inventor: Paul Farrar
  • Publication number: 20060238187
    Abstract: A circuit assembly for fabricating an air bridge structure and a method of fabricating an integrated circuit package capable of supporting a circuit assembly including an air bridge structure. A circuit assembly comprises an electronic chip and a conductive structure embedded in a plurality of materials having a plurality of vaporization temperatures. The plurality of materials is formed on the electronic chip and the conductive structure is coupled to the electronic chip. To fabricate the circuit assembly, a support structure, including interstices, is formed on an electronic chip. The interstices of the support structure are filled with a material having a vaporization temperature that is less than the vaporization temperature of the support structure. Conductive structures are embedded in the support structure and the material, and a connective structure is mounted on the support structure. Finally, the material is removed from the interstices by heating the circuit assembly.
    Type: Application
    Filed: July 12, 2006
    Publication date: October 26, 2006
    Inventor: Paul Farrar
  • Patent number: 7121919
    Abstract: Chemical mechanical polishing (CMP) systems and methods are provided herein. One aspect of the present subject matter is a polishing system. One polishing system embodiment includes a platen adapted to receive a wafer, and a polishing pad drum that has a cylindrical, or generally cylindrical, shape with a length and an axis of rotation along the length. The polishing pad drum is adapted to rotate about the axis of rotation along the drum length. The polishing pad drum, the platen, or both the polishing pad drum and the platen are adapted to be linearly moved to polish the surface of the wafer using the rotating polishing pad drum. The polishing pad drum and the platen are adapted to be operably positioned a predetermined minimum distance from each other as the polishing pad drum and the platen pass each other due the linear motion.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: October 17, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Publication number: 20060221670
    Abstract: A memory cell that has both a DRAM cell and a non-volatile memory cell. The non-volatile memory cell might include a flash memory or an NROM cell. The memory cell is comprised of a vertical floating body transistor with dual gates, one on either side of a vertical pillar of a substrate. One gate is a polysilicon gate and gate insulator that is adjacent to the floating body of the transistor and acts as a DRAM cell. The non-volatile memory cell is constructed on the other side of the pillar with a floating gate or NROM structure. The DRAM and non-volatile cells are linked by a drain region coupling the two cells to a memory array bitline. The bottom of trenches on either side of the pillar have source regions that are linked to respective source lines of the memory array.
    Type: Application
    Filed: May 17, 2006
    Publication date: October 5, 2006
    Inventors: Leonard Forbes, Paul Farrar
  • Publication number: 20060220172
    Abstract: An improved electrical interconnect for an integrated circuit and methods for providing the same are disclosed. The electrical interconnect includes an air bridge extending through a gaseous medium so as to reduce the capacitance of the interconnect. The air bridge is supported at a first and second end such that the air bridge is suspended above the substrate. The air bridge comprises a highly conductive material, such as silver, so as to provide the air bridge with a reduced resistivity. To inhibit gaseous medium from contaminating the air bridge, the air bridge further comprises an adherent coating interposed between the air bridge and the gaseous medium. A method of forming the electrical interconnect is also disclosed, wherein, prior to forming the adherent coating, the conductive material is processed so as to form fewer grain boundaries, which enhances the electrical properties of the air bridge.
    Type: Application
    Filed: May 23, 2006
    Publication date: October 5, 2006
    Inventor: Paul Farrar
  • Publication number: 20060208305
    Abstract: A memory cell that has both a DRAM cell and a non-volatile memory cell. The non-volatile memory cell might include a flash memory or an NROM cell. The memory cell is comprised of a vertical floating body transistor with dual gates, one on either side of a vertical pillar of a substrate. One gate is a polysilicon gate and gate insulator that is adjacent to the floating body of the transistor and acts as a DRAM cell. The non-volatile memory cell is constructed on the other side of the pillar with a floating gate or NROM structure. The DRAM and non-volatile cells are linked by a drain region coupling the two cells to a memory array bitline. The bottom of trenches on either side of the pillar have source regions that are linked to respective source lines of the memory array.
    Type: Application
    Filed: May 17, 2006
    Publication date: September 21, 2006
    Inventors: Leonard Forbes, Paul Farrar