Patents by Inventor Ping-Wei Wang

Ping-Wei Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10943827
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and a second fin structure over a semiconductor substrate. A top surface of the first fin structure is closer to the semiconductor substrate than a top surface of the second fin structure. The semiconductor device structure also includes a first epitaxial structure on the first fin structure. The semiconductor device structure further includes a second epitaxial structure on the third fin structure. The first epitaxial structure is wider than the second epitaxial structure.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chun Keng, Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 10868019
    Abstract: A semiconductor device includes: a first well having a first conductivity-type extending along a first direction; second and third wells having a second conductivity-type and disposed on opposite sides of the first well in a second direction; a first array of bitcells and a second array of bitcells disposed on the first to third wells; a strap cell disposed on the first to third wells and between the first and second arrays and including first and second well pickup regions having the first conductivity-type, disposed on the first well, and spaced-apart from each other in the first direction, and third and fourth well pickup regions having the second conductivity-type and disposed on the second and third wells, respectively; first and second conductive patterns electrically connected to the first and second well pickup regions, respectively; and a third conductive pattern electrically connected to the third and fourth well pickup regions.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Hung Lo, Feng-Ming Chang, Ying-Hsiu Kuo, Ping-Wei Wang
  • Publication number: 20200335508
    Abstract: An SRAM structure is provided. The SRAM structure includes a plurality of first well regions with a first doping type, a second well region with a second doping type, a plurality of first well pick-up regions, a plurality of second well pick-up regions and a plurality of memory cells. The first well regions are formed in a semiconductor substrate. The second well region is formed in the semiconductor substrate. The first well pick-up regions are formed in the first well regions. The second well pick-up regions are formed in the second well region. Each of the memory cells is disposed on two adjacent first well regions and a portion of the second well region between the two adjacent first well regions. Each of the first well pick-up regions is disposed between two adjacent second well pick-up regions.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Feng-Ming CHANG, Chia-Hao PAO, Lien-Jung HUNG, Ping-Wei WANG
  • Publication number: 20200335620
    Abstract: A semiconductor device structure is provided. The structure includes a semiconductor substrate having a well pick-up region and an active region adjacent to the well pick-up region. The semiconductor device structure also includes a first fin structure with a first width and a third fin structure with a third width formed adjacent to each other in the well pick-up region and a second fin structure with a second width and a fourth fin structure with a fourth width formed adjacent to each other in the active region. The first width is different than the second width, the third width is different than the fourth width, and the first width is substantially equal to or greater than the third width.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 22, 2020
    Inventors: Yu-Kuan LIN, Chang-Ta YANG, Ping-Wei WANG
  • Publication number: 20200286550
    Abstract: A method of performing a write operation on a static random access memory (SRAM) bit cell includes activating the bit cell by supplying a signal to a p-type pass gate of the bit cell, the signal causing the p-type pass gate to be in a conductive state, using a p-type transistor of a write multiplexer to maintain a data line at a logically high voltage, and transferring bit information from the data line to the activated bit cell using the p-type pass gate.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: Wei-Cheng WU, Wei Min CHAN, Yen-Huei CHEN, Hung-Jen LIAO, Ping-Wei WANG
  • Publication number: 20200272781
    Abstract: A method includes laying out a standard cell region, with a rectangular space being within the standard cell region. The standard cell region includes a first row of standard cells having a first bottom boundary facing the rectangular space, and a plurality of standard cells having side boundaries facing the rectangular space. The plurality of standard cells include a bottom row of standard cells. A memory array is laid out in the rectangular space, and a second bottom boundary of the bottom row and a third bottom boundary of the memory array are aligned to a same straight line. A filler cell region is laid out in the rectangular space. The filler cell region includes a first top boundary contacting the first bottom boundary of the first row of standard cells, and a fourth bottom boundary contacting a second top boundary of the memory array.
    Type: Application
    Filed: December 20, 2019
    Publication date: August 27, 2020
    Inventors: Feng-Ming Chang, Ruey-Wen Chang, Ping-Wei Wang, Sheng-Hsiung Wang, Chi-Yu Lu
  • Publication number: 20200266200
    Abstract: A semiconductor device includes: a first well having a first conductivity-type extending along a first direction; second and third wells having a second conductivity-type and disposed on opposite sides of the first well in a second direction; a first array of bitcells and a second array of bitcells disposed on the first to third wells; a strap cell disposed on the first to third wells and between the first and second arrays and including first and second well pickup regions having the first conductivity-type, disposed on the first well, and spaced-apart from each other in the first direction, and third and fourth well pickup regions having the second conductivity-type and disposed on the second and third wells, respectively; first and second conductive patterns electrically connected to the first and second well pickup regions, respectively; and a third conductive pattern electrically connected to the third and fourth well pickup regions.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Kuo-Hung LO, Feng-Ming CHANG, Ying-Hsiu KUO, Ping-Wei WANG
  • Publication number: 20200266108
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and a second fin structure over a semiconductor substrate. A top surface of the first fin structure is closer to the semiconductor substrate than a top surface of the second fin structure. The semiconductor device structure also includes a first epitaxial structure on the first fin structure. The semiconductor device structure further includes a second epitaxial structure on the third fin structure. The first epitaxial structure is wider than the second epitaxial structure.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chun KENG, Yu-Kuan LIN, Chang-Ta YANG, Ping-Wei WANG
  • Publication number: 20200251478
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: YU-KUAN LIN, CHANG-TA YANG, PING-WEI WANG, KUO-YI CHAO, MEI-YUN WANG
  • Publication number: 20200251477
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: YU-KUAN LIN, CHANG-TA YANG, PING-WEI WANG, KUO-YI CHAO, MEI-YUN WANG
  • Publication number: 20200251476
    Abstract: Fin-based well straps are disclosed for improving performance of memory arrays, such as static random access memory arrays. An exemplary well strap cell is disposed between a first memory cell and a second memory cell. The well strap cell includes a p-well, a first n-well, and a second n-well disposed in a substrate. The p-well, the first n-well, and the second n-well are configured in the well strap cell such that a middle portion of the well strap cell is free of the first n-well and the second n-well along a gate length direction. The well strap cell further includes p-well pick up regions to the p-well and n-well pick up regions to the first n-well, the second n-well, or both. The p-well has an I-shaped top view along the gate length direction.
    Type: Application
    Filed: August 1, 2019
    Publication date: August 6, 2020
    Inventors: Feng-Ming Chang, Chia-Hao Pao, Lien Jung Hung, Ping-Wei Wang
  • Patent number: 10727343
    Abstract: A semiconductor device structure is provided. The structure includes a semiconductor substrate having a well pick-up region and an active region. Each of the well pick-up region and the active region includes a first well region and a second well region that have different conductivity types. There is a well boundary between the first well region and the second well region. A first fin structure is in the first well region of the well pick-up region and second fin structures are in the first well region of the active region. The minimum distance between the well boundary and the first fin structure is greater than the minimum distance between the well boundary and one of the second fin structures that is closest to the well boundary.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 10714484
    Abstract: An SRAM structure is provided. The SRAM structure includes a plurality of first well regions with a first doping type, a plurality of second well regions with a second doping type, a third well region with the second doping type, a plurality of first well pick-up regions, a plurality of second well pick-up regions, and a plurality of memory cells. The first well regions, the second well regions, and the third well region are formed in a semiconductor substrate. The third well region is adjacent to the second well regions. The first well pick-up regions are formed in the first well regions. The second well pick-up regions are formed in the third well region. The second well pick-up regions are shared by the third well region and the second well regions. The memory cells are formed on the first and second well regions.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Ming Chang, Chia-Hao Pao, Lien-Jung Hung, Ping-Wei Wang
  • Patent number: 10685704
    Abstract: A static random access memory (SRAM) includes a bit cell that includes a p-type pass gate, a bit information path connected to the bit cell by the p-type pass gate, and a write multiplexer connected to the bit information path. The write multiplexer includes a p-type transistor configured to selectively couple the bit information path to a flip-flop.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Cheng Wu, Wei Min Chan, Yen-Huei Chen, Hung-Jen Liao, Ping-Wei Wang
  • Patent number: 10672775
    Abstract: A semiconductor device includes: a first well having a first conductivity-type extending along a first direction; second and third wells having a second conductivity-type and disposed on opposite sides of the first well in a second direction; a first array of bitcells and a second array of bitcells disposed on the first to third wells; a strap cell disposed on the first to third wells and between the first and second arrays and including first and second well pickup regions having the first conductivity-type, disposed on the first well, and spaced-apart from each other in the first direction, and third and fourth well pickup regions having the second conductivity-type and disposed on the second and third wells, respectively; first and second conductive patterns electrically connected to the first and second well pickup regions, respectively; and a third conductive pattern electrically connected to the third and fourth well pickup regions.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Hung Lo, Feng-Ming Chang, Ying-Hsiu Kuo, Ping-Wei Wang
  • Publication number: 20200168616
    Abstract: Well pick-up regions are disclosed herein for improving performance of memory arrays, such as static random access memory arrays. An exemplary integrated circuit (IC) device includes a circuit region; a first well pick-up (WPU) region; a first well oriented lengthwise along a first direction in the circuit region and extending into the first WPU region, the first well having a first conductivity type; and a second well oriented lengthwise along the first direction in the circuit region and extending into the first WPU region, the second well having a second conductivity type different from the first conductivity type, wherein the first well has a first portion in the circuit region and a second portion in the first WPU region, and the second portion of the first well has a width larger than the first portion of the first well along a second direction perpendicular to the first direction.
    Type: Application
    Filed: October 18, 2019
    Publication date: May 28, 2020
    Inventors: Chih-Chuan Yang, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 10658242
    Abstract: A structure and a method of a semiconductor device structure are provided. The method includes forming a first fin structure, a second fin structure, and a third fin structure over a semiconductor substrate. The method includes forming first spacer elements over sidewalls of the first fin structure and the second fin structure and partially removing the first fin structure and the second fin structure. The method includes forming second spacer elements over sidewalls of the third fin structure and partially removing the third fin structure. The second spacer element is taller than the first spacer element. The method includes epitaxially growing a semiconductor material over the first fin structure, the second fin structure, and the third fin structure such that a merged semiconductor element is formed on the first fin structure and the second fin structure, and an isolated semiconductor element is formed on the third fin structure.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chun Keng, Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 10651178
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 12, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Publication number: 20200135743
    Abstract: A method for manufacturing a SRAM cell includes forming a first p-well in a semiconductor substrate; forming a first semiconductor fin extending within the first p-well; forming a first mask layer over the first semiconductor fin; patterning the first mask layer to expose a first channel region of the first semiconductor fin, while leaving a second channel region of the first semiconductor fin covered by the first mask layer; with the patterned first mask layer in place, doping the first channel region of the first semiconductor fin with a first dopant; after doping the first channel region of the first semiconductor fin, removing the first mask layer from the second channel region; and forming a first gate structure extending across the first channel region of the first semiconductor fin and a second gate structure extending across the second channel region of the first semiconductor fin.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 30, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jordan HSU, Yu-Kuan LIN, Shau-Wei LU, Chang-Ta YANG, Ping-Wei WANG, Kuo-Hung LO
  • Publication number: 20200135744
    Abstract: A semiconductor device includes first, second, third, fourth, and fifth active regions each extending lengthwise along a first direction, wherein the first, second, third, and fourth active regions comprise channel regions and source/drain (S/D) regions of first, second, third, and fourth transistors respectively, and the fifth active region comprises channel regions and S/D regions of fifth and sixth transistors; and first, second, third, fourth, fifth, and sixth gates each extending lengthwise along a second direction perpendicular to the first direction, wherein the first through sixth gates are configured to engage the channel regions of the first through sixth transistors respectively, wherein the first, second, and fifth gates are electrically connected, and wherein one of the S/D regions of the first transistor, one of the S/D regions of the second transistor, the third gate, and the fourth gate are electrically connected.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Kuo-Hsiu Hsu, Yu-Kuan Lin, Feng-Ming Chang, Lien Jung Hung, Ping-Wei Wang