Patents by Inventor Quang Le

Quang Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8941954
    Abstract: A magnetic read head that has improved pinned layer stability while also maintaining excellent free layer stability. The free layer has sides that define a trackwidth of the sensor and a back edge that defines a functional stripe height of the sensor. However, the pinned layer can extend significantly beyond both the width of the free layer and the back edge (e.g. stripe height) of the free layer. The sensor also has a soft magnetic bias structure that compensates for the reduced volume presented by the side extension of the pinned layer. The soft magnetic bias structure can be magnetically coupled with the trailing magnetic shield, either parallel coupled or anti-parallel coupled. In addition, all or a portion of the soft magnetic bias structure can be exchange coupled to a layer of anti-ferromagnetic material in order to improve the robustness of the soft magnetic bias structure.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 27, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu, Kochan Ju, Youfeng Zheng
  • Publication number: 20150002961
    Abstract: A scissor type magnetic sensor having a soft magnetic bias structure located at a back edge of the sensor stack. The sensor stack includes first and second magnetic free layers that are anti-parallel coupled across a non-magnetic layer sandwiched there-between. The soft magnetic bias structure has a length as measured perpendicular to the air bearing surface that is greater than its width as measured parallel with the air bearing surface. This shape allows the soft magnetic bias structure to have a magnetization that is maintained in a direction perpendicular to the air bearing surface and which allows the bias structure to maintain a magnetic bias field for biasing the free layers of the sensor stack.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Christopher D. Keener, Quang Le, David J. Seagle, Neil Smith, Petrus A. Van Der Heijden
  • Patent number: 8907666
    Abstract: A scissor style magnetic sensor having a novel hard bias structure for improved magnetic biasing robustness. The sensor includes a sensor stack that includes first and second magnetic layers separated by a non-magnetic layer such as an electrically insulating barrier layer or an electrically conductive spacer layer. The first and second magnetic layers have magnetizations that are antiparallel coupled, but that are canted in a direction that is neither parallel with nor perpendicular to the air bearing surface by a magnetic bias structure. The magnetic bias structure includes a neck portion extending from the back edge of the sensor stack and having first and second sides that are aligned with first and second sides of the sensor stack. The bias structure also includes a tapered or wedged portion extending backward from the neck portion.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 9, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Shuxia Wang, Guangli Liu, Yongchul Ahn
  • Publication number: 20140302441
    Abstract: A method for manufacturing a magnetic sensor using an electrical lapping guide deposited and patterned simultaneously with a hard bias structure of the sensor material. The method includes depositing a sensor material, and patterning and ion milling the sensor material to define a track width of the sensor. A magnetic, hard bias material is then deposited and a second patterning and ion milling process is performed to simultaneously define the back edge of an electrical lapping guide and a back edge of the sensor.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Shin Funada, Quang Le, Jui-Lung Li
  • Patent number: 8842395
    Abstract: A magnetic read sensor having an extended pinned layer structure and also having an extended free layer structure. The extended pinned layer structure and extended free layer structure both extend beyond the strip height of the free layer of the sensor to provide improved pinning strength as well as improved free layer biasing reliability and bias field strength.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 23, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Kochan Ju, Quang Le, Simon H. Liao, Guangli Liu
  • Patent number: 8836059
    Abstract: The present invention generally relates to a magnetic sensor in a read head having a hard or soft bias layer that is uniform in thickness within the sensor stack. The method of making such sensor is also disclosed. The free layer stripe height is first defined, followed by defining the track width, and lastly the pinned layer stripe height is defined. The pinned layer and the hard or soft bias layer are defined in the same process step. This approach eliminates a partial hard or soft bias layer and reduces potential instability issues.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 16, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Yongchul Ahn, Xiaozhong Dang, Yimin Hsu, Quang Le, Thomas Leong, Simon Liao, Guangli Liu, Aron Pentek
  • Publication number: 20140227707
    Abstract: The present technology describes various embodiments of devices for processing, analyzing, detecting, measuring, and separating fluids. The devices can be used to perform these processes on a microfluidic scale, and with control over fluid and reagent transport. In one embodiment, for example, a device for performing chemical processes can include a porous wick comprising a pathway defined by an input end, an output end, and a length between the input end and the output end. The pathway is configured to wick fluid from the input end to the output end by capillary action. The device can further include a reagent placed on the pathway. The reagent can be placed in a pattern configured to control a spatial or temporal distribution of the reagent along the pathway upon wetting of the pathway.
    Type: Application
    Filed: June 25, 2012
    Publication date: August 14, 2014
    Applicant: University of Washington Through itsCenter for Com
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Gina Fridley, Huy Quang Le, Peter C. Kauffman
  • Patent number: 8797694
    Abstract: A magnetic read sensor having a hard bias structure that extends beyond the back edge of the sensor stack by a controlled, distance that is chosen to maximize both hard bias field and hard bias magnetic coercivity and anisotropy. The hard bias structure has a back edge that is well defined and that has a square corner at its innermost end adjacent to the sensor stack. The magnetic sensor can be constructed by a process that includes a separate making an milling process that is dedicated to defining the back edge of the hard bias structure.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 5, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Quang Le, David J. Seagle, Guangli Liu, Yongchul Ahn, Simon H. Liao
  • Patent number: 8778198
    Abstract: A method for manufacturing a magnetic sensor using an electrical lapping guide deposited and patterned simultaneously with a hard bias structure of the sensor material. The method includes depositing a sensor material, and patterning and ion milling the sensor material to define a track width of the sensor. A magnetic, hard bias material is then deposited and a second patterning and ion milling process is performed to simultaneously define the back edge of an electrical lapping guide and a back edge of the sensor.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 15, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Quang Le, Shin Funada, Jui-Lung Li
  • Publication number: 20140178713
    Abstract: A magnetic read sensor having reduced hard bias free layer spacing and improved insulation robustness between the hard bias layers and the shield and sensor. The read sensor has a novel bi-layer insulation layer that can be made very thin while also providing good electrical insulation to prevent sense current shunting. The bi-layer insulation layer can be made by a process that provides improved sensor performance.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu
  • Publication number: 20140175048
    Abstract: A method of manufacturing a magnetic sensor having a hard bias structure located at a back edge of the sensor. The method forms an electrical lapping guide that is compatible for use with such a sensor having a back edge hard bias structure and which can accurately determine a termination point for a lapping operation that forms an air bearing surface of the slider and determines the sensor stripe height.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: David P. Druist, Quang Le, Yang Li, David J. Seagle, Petrus A. Van Der Heijden
  • Publication number: 20140175576
    Abstract: The present invention generally relates to a magnetic sensor in a read head having a hard or soft bias layer that is uniform in thickness within the sensor stack. The method of making such sensor is also disclosed. The free layer stripe height is first defined, followed by defining the track width, and lastly the pinned layer stripe height is defined. The pinned layer and the hard or soft bias layer are defined in the same process step. This approach eliminates a partial hard or soft bias layer and reduces potential instability issues.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Yongchul AHN, Xiaozhong DANG, Yimin HSU, Quang LE, Thomas LEONG, Simon LIAO, Guangli LIU, Aron PENTEK
  • Publication number: 20140168824
    Abstract: A magnetic read sensor having an extended pinned layer structure and also having an extended free layer structure. The extended pinned layer structure and extended free layer structure both extend beyond the strip height of the free layer of the sensor to provide improved pinning strength as well as improved free layer biasing reliability and bias field strength.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Kochan Ju, Quang Le, Simon H. Liao, Guangli Liu
  • Publication number: 20140168822
    Abstract: A magnetic read head that has improved pinned layer stability while also maintaining excellent free layer stability. The free layer has sides that define a trackwidth of the sensor and a back edge that defines a functional stripe height of the sensor. However, the pinned layer can extend significantly beyond both the width of the free layer and the back edge (e.g. stripe height) of the free layer. The sensor also has a soft magnetic bias structure that compensates for the reduced volume presented by the side extension of the pinned layer. The soft magnetic bias structure can be magnetically coupled with the trailing magnetic shield, either parallel coupled or anti-parallel coupled. In addition, all or a portion of the soft magnetic bias structure can be exchange coupled to a layer of anti-ferromagnetic material in order to improve the robustness of the soft magnetic bias structure.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu, Kochan Ju, Youfeng Zheng
  • Patent number: 8749926
    Abstract: A magnetic scissor type magnetic read head having magnetic side shielding for reduced effective track width and having side biasing for improved stability. The read head includes first and magnetic side shields that each include first and second magnetic layers and an anti-parallel exchange coupling layer sandwiched there-between. The magnetic layers of the side shields are anti-parallel coupled with one another such that one of the magnetic layers has its magnetization oriented in a first direction parallel with the air bearing surface and the second magnetic layer has its magnetization oriented in a second direction that is opposite to the first direction and also parallel with the air bearing surface. These magnetizations of the first and second magnetic layers provide a bias field that stabilizes the magnetization of the free magnetic layers of the sensor stack to prevent flipping of the magnetizations of these layers.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: June 10, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu, Stefan Maat, Xiaozhong Dang, David J. Seagle, Petrus A. Van Der Heijden
  • Publication number: 20140153138
    Abstract: A magnetic scissor type magnetic read head having magnetic side shielding for reduced effective track width and having side biasing for improved stability. The read head includes first and magnetic side shields that each include first and second magnetic layers and an anti-parallel exchange coupling layer sandwiched there-between. The magnetic layers of the side shields are anti-parallel coupled with one another such that one of the magnetic layers has its magnetization oriented in a first direction parallel with the air bearing surface and the second magnetic layer has its magnetization oriented in a second direction that is opposite to the first direction and also parallel with the air bearing surface. These magnetizations of the first and second magnetic layers provide a bias field that stabilizes the magnetization of the free magnetic layers of the sensor stack to prevent flipping of the magnetizations of these layers.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu, Stefan Maat, Xiaozhong Dang, David J. Seagle, Petrus A. Van Der Heijden
  • Patent number: 8634162
    Abstract: A magnetic write head for data recording having a magnetic write pole with a stepped magnetic shell structure that defines a secondary flare point. The secondary flare point defined by the magnetic shell portion can be more tightly controlled with respect to its distance from the air bearing surface (ABS) of the write head than can a traditional flare point that is photolithographically on the main pole structure. This allows the effective flare point of the write head to be moved much closer to the ABS than would otherwise be possible using currently available tooling and photolithography techniques. The write head may also include a magnetic trailing shield that wraps around the main pole portion. The trailing shield can have a hack edge defining a trailing shield throat height that is either between the secondary flare point or coincident or behind the secondary flare point, depending on design requirements.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 21, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Rene Bonhote, Thomas Dudley Boone, Jr., Quang Le, Jui-Lung Li, Jeffrey S. Lille, Scott Arthur MacDonald, Neil Leslie Robertson, Xhavin Sinha, Petrus Antonius Van Der Heijden
  • Patent number: 8615868
    Abstract: A method for manufacturing a magnetic sensor that includes depositing a plurality of mask layers, then forming a stripe height defining mask over the sensor layers. A first ion milling is performed just sufficiently to remove portions of the free layer that are not protected by the stripe height defining mask, the first ion milling being terminated at the non-magnetic barrier or spacer layer. A dielectric layer is then deposited, preferably by ion beam deposition. A second ion milling is then performed to remove portions of the pinned layer structure that are not protected by the mask, the free layer being protected during the second ion milling by the dielectric layer.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 31, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Yongchul Ahn, Xiaozhong Dang, Quang Le, Simon H. Liao
  • Patent number: 8553371
    Abstract: Embodiments herein generally relate to TMR readers and methods for their manufacture. The embodiments discussed herein disclose TMR readers that utilize a structure that avoids use of the DLC layer over the sensor structure and over the hard bias layer. The capping structure over the sensor structure functions as both a protective layer for the sensor structure and a CMP stop layer. The hard bias capping structure functions as both a protective structure for the hard bias layer and as a CMP stop layer. The capping structures that are free of DLC reduce the formation of notches in the second shield layer so that second shield layer is substantially flat.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 8, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Honglin Zhu, Liubo Hong, Hicham M. Sougrati, Quang Le, Jui-Lung Li, Chando Park
  • Patent number: 8500916
    Abstract: Systems and methods for aligning wafers within wafer processing equipment. In a first embodiment, a wafer alignment nozzle comprises a fixed cylindrical member. A moveable cylindrical member is disposed with the fixed cylindrical member in a sliding fit. The moveable cylindrical member comprises a plurality of angled fluid orifices for directing a plurality of streams of the fluid onto a surface of the wafer.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: August 6, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Jian-Huei Feng, Hung-Chin Guthrie, Quang Le, James Nystrom