Patents by Inventor Rajesh Katkar

Rajesh Katkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240063199
    Abstract: Direct-bonded LED arrays and applications are provided. An example process fabricates a LED structure that includes coplanar electrical contacts for p-type and n-type semiconductors of the LED structure on a flat bonding interface surface of the LED structure. The coplanar electrical contacts of the flat bonding interface surface are direct-bonded to electrical contacts of a driver circuit for the LED structure. In a wafer-level process, micro-LED structures are fabricated on a first wafer, including coplanar electrical contacts for p-type and n-type semiconductors of the LED structures on the flat bonding interface surfaces of the wafer. At least the coplanar electrical contacts of the flat bonding interface are direct-bonded to electrical contacts of CMOS driver circuits on a second wafer.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventors: Min Tao, Liang Wang, Rajesh Katkar, Cyprian Emeka Uzoh
  • Patent number: 11894326
    Abstract: A first conductive material having a first hardness is disposed within a recess or opening of a microelectronic component, in a first preselected pattern, and forms a first portion of an interconnect structure. A second conductive material having a second hardness different from the first hardness is disposed within the recess or opening in a second preselected pattern and forms a second portion of the interconnect structure.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 6, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20240038633
    Abstract: Embodiments herein provide for fluidic cooling assemblies embedded within a device package and related manufacturing methods. In one embodiment, the cooling assembly includes a cold plate body attached to a singulated device and a manifold lid attached to the cold plate body. The cold plate body has a first side adjacent to the singulated device and an opposite second side, and the manifold lid is attached to the second side. In some embodiments, the first side of the cold plate body and the backside of the singulated device each comprise a dielectric material surface, the cold plate body is attached to the singulated device by direct dielectric bonds formed between the dielectric material surfaces, the cold plate body, and the manifold lid define one or more cavities, and the one or more cavities form at least a portion of a fluid flow path from an inlet to an outlet of the manifold lid.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Inventors: Belgacem Haba, Thomas Workman, Cyprian Emeka Uzoh, Guilian Gao, Rajesh Katkar
  • Patent number: 11876076
    Abstract: A memory structure is provided, including a NAND block comprising a plurality of oxide layers, the plurality of layers forming a staircase structure at a first edge of the NAND block, a plurality of vias disposed on the staircase structure of NAND block, two or more of plurality of vias terminating along a same plane, a plurality of first bonding interconnects disposed on the plurality of vias, a plurality of bitlines extending across the NAND block, and a plurality of second bonding interconnects disposed along the bitlines. The memory structure may be stacked on another of the memory structure to form a stacked memory device.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 16, 2024
    Assignee: Adeia Semiconductor Technologies LLC
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar, Pearl Po-Yee Cheng
  • Publication number: 20240006377
    Abstract: Apparatuses and methods are described. This apparatus includes a bridge die having first contacts on a die surface being in a molding layer of a reconstituted wafer. The reconstituted wafer has a wafer surface including a layer surface of the molding layer and the die surface. A redistribution layer on the wafer surface includes electrically conductive and dielectric layers to provide conductive routing and conductors. The conductors extend away from the die surface and are respectively coupled to the first contacts at bottom ends thereof. At least second and third IC dies respectively having second contacts on corresponding die surfaces thereof are interconnected to the bridge die and the redistribution layer. A first portion of the second contacts are interconnected to top ends of the conductors opposite the bottom ends thereof in part for alignment of the at least second and third IC dies to the bridge die.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Liang Wang, Rajesh Katkar
  • Patent number: 11862604
    Abstract: An integrated circuit and a method for designing an IC wherein the base or host chip is bonded to smaller chiplets via DBI technology. The bonding of chip to chiplet creates an uneven or multi-level surface of the overall chip requiring a releveling for future bonding. The uneven surface is built up with plating of bumps and subsequently releveled with various methods including planarization.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: January 2, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Javier A. Delacruz, Belgacem Haba, Cyprian Emeka Uzoh, Rajesh Katkar, Ilyas Mohammed
  • Publication number: 20230420399
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz
  • Publication number: 20230420419
    Abstract: An element that is configured to bond to another element is disclosed. A first element that can include a first plurality of contact pads on a first surface. The first plurality of contact pads includes a first contact pad and a second contact pad that are spaced apart from one another. The first and second contact pads are electrically connected to one another for redundancy. The first element can be prepared for direct bonding. The first element can be bonded to a second element to form a bonded structure. The second element has a second plurality of contact pads on a second surface. At least one of the second plurality of contact pads is bonded and electrically connected to at least one of the first plurality of contact pads.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 28, 2023
    Inventors: Rajesh Katkar, Belgacem Haba
  • Publication number: 20230420313
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Rajesh Katkar, Liang Wang, Cyprian Emeka Uzoh, Shaowu Huang, Guilian Gao, Ilyas Mohammed
  • Patent number: 11848284
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over at least a portion of the active circuitry. The obstructive material can be configured to obstruct external access to the active circuitry. The bonded structure can include a disruption structure configured to disrupt functionality of the at least a portion of the active circuitry upon debonding of the protective element from the semiconductor element.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: December 19, 2023
    Assignee: Adeia Semiconductor Bonding Technologies Inc.
    Inventors: Javier A DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Patent number: 11842894
    Abstract: An element that is configured to bond to another element is disclosed. A first element that can include a first plurality of contact pads on a first surface. The first plurality of contact pads includes a first contact pad and a second contact pad that are spaced apart from one another. The first and second contact pads are electrically connected to one another for redundancy. The first element can be prepared for direct bonding. The first element can be bonded to a second element to form a bonded structure. The second element has a second plurality of contact pads on a second surface. At least one of the second plurality of contact pads is bonded and electrically connected to at least one of the first plurality of contact pads.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: December 12, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Rajesh Katkar, Belgacem Haba
  • Patent number: 11837582
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: December 5, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Jeremy Alfred Theil, Belgacem Haba, Rajesh Katkar
  • Patent number: 11830804
    Abstract: Techniques are disclosed herein for creating over and under interconnects. Using techniques described herein, over and under interconnects are created on an IC. Instead of creating signaling interconnects and power/ground interconnects on a same side of a chip assembly, the signaling interconnects can be placed on an opposing side of the chip assembly as compared to the power interconnects.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 28, 2023
    Assignee: Invensas LLC
    Inventors: Belgacem Haba, Stephen Morein, Ilyas Mohammed, Rajesh Katkar, Javier A. Delacruz
  • Patent number: 11824046
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: November 21, 2023
    Assignee: Invensas LLC
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Patent number: 11817409
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: November 14, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz
  • Publication number: 20230360968
    Abstract: Representative implementations of techniques and devices are used to reduce or prevent conductive material diffusion into insulating or dielectric material of bonded substrates. Misaligned conductive structures can come into direct contact with a dielectric portion of the substrates due to overlap, especially while employing direct bonding techniques. A barrier interface that can inhibit the diffusion is disposed generally between the conductive material and the dielectric at the overlap.
    Type: Application
    Filed: April 10, 2023
    Publication date: November 9, 2023
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20230361072
    Abstract: A bonded structure can include a first element having a first conductive interface feature and a second element having a second conductive interface feature. An integrated device can be coupled to or formed with the first element or the second element. The first conductive interface feature can be directly bonded to the second conductive interface feature to define an interface structure. The interface structure can be disposed about the integrated device in an at least partially annular profile to connect the first and second elements.
    Type: Application
    Filed: December 28, 2022
    Publication date: November 9, 2023
    Inventors: Liang Wang, Rajesh Katkar, Javier A. DeLaCruz, Arkalgud R. Sitaram
  • Patent number: 11804469
    Abstract: Techniques and mechanisms for coupling chiplets to microchips utilizing active bridges. The active bridges include circuits that provide various functions and capabilities that previously may have been located on the microchips and/or the chiplets. Furthermore, the active bridges may be coupled to the microchips and the chiplets via “native interconnects” utilizing direct bonding techniques. Utilizing the active bridges and the direct bonding techniques of the active bridges to the microchips and the chiplets, the pitch for the interconnects can be greatly reduced going from a pitch in the millimeters to a fine pitch that may be in a range of less than one micron to approximately five microns.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: October 31, 2023
    Assignee: Invensas LLC
    Inventors: Javier A. Delacruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20230317591
    Abstract: In various embodiments, a bonded structure is disclosed. The bonded structure can include an element and a passive electronic component having a first surface bonded to the element and a second surface opposite the first surface. The passive electronic component can comprise a first anode terminal bonded to a corresponding second anode terminal of the element and a first cathode terminal bonded to a corresponding second cathode terminal of the element. The first anode terminal and the first cathode terminal can be disposed on the first surface of the passive electronic component.
    Type: Application
    Filed: December 29, 2022
    Publication date: October 5, 2023
    Inventors: Belgacem Haba, llyas Mohammed, Rajesh Katkar, Gabriel Z. Guevara, Javier A. DeLaCruz, Shaowu Huang, Laura Willis Mirkarimi
  • Publication number: 20230317703
    Abstract: Direct-bonded LED arrays and applications are provided. An example process fabricates a LED structure that includes coplanar electrical contacts for p-type and n-type semiconductors of the LED structure on a flat bonding interface surface of the LED structure. The coplanar electrical contacts of the flat bonding interface surface are direct-bonded to electrical contacts of a driver circuit for the LED structure. In a wafer-level process, micro-LED structures are fabricated on a first wafer, including coplanar electrical contacts for p-type and n-type semiconductors of the LED structures on the flat bonding interface surfaces of the wafer. At least the coplanar electrical contacts of the flat bonding interface are direct-bonded to electrical contacts of CMOS driver circuits on a second wafer.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Min Tao, Liang Wang, Rajesh Katkar, Cyprian Emeka Uzoh