Patents by Inventor Rajesh Katkar

Rajesh Katkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230123423
    Abstract: Microelectronic devices having stacked electromagnetic coils are disclosed. In one example, a microelectronic device can include a first semiconductor element and a second semiconductor element disposed on the first semiconductor element. The microelectronic device can also include an electromagnetic coil. A first portion of the electromagnetic coil and a second portion of the electromagnetic coil may be spaced apart by the first semiconductor element. A first conductive via extending through the first semiconductor element may connect the first and second portions of the electromagnetic coil. Methods for forming such microelectronic devices are also disclosed.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 20, 2023
    Inventors: Guilian Gao, Gaius Gillman Fountain, Jr., Belgacem Haba, Rajesh Katkar
  • Publication number: 20230118156
    Abstract: Layer structures for making direct metal-to-metal bonds at low temperatures and shorter annealing durations in microelectronics are provided. Example bonding interface structures enable direct metal-to-metal bonding of interconnects at low annealing temperatures of 150° C. or below, and at a lower energy budget. The example structures provide a precise metal recess distance for conductive pads and vias being bonded that can be achieved in high volume manufacturing. The example structures provide a vertical stack of conductive layers under the bonding interface, with geometries and thermal expansion features designed to vertically expand the stack at lower temperatures over the precise recess distance to make the direct metal-to-metal bonds. Further enhancements, such as surface nanotexture and copper crystal plane selection, can further actuate the direct metal-to-metal bonding at lowered annealing temperatures and shorter annealing durations.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: Guilian Gao, Gaius Gillman Fountain, JR., Laura Wills Mirkarimi, Rajesh Katkar, Ilyas Mohammed, Cyprian Emeka Uzoh
  • Patent number: 11626363
    Abstract: In various embodiments, a bonded structure is disclosed. The bonded structure can include an element and a passive electronic component having a first surface bonded to the element and a second surface opposite the first surface. The passive electronic component can comprise a first anode terminal bonded to a corresponding second anode terminal of the element and a first cathode terminal bonded to a corresponding second cathode terminal of the element. The first anode terminal and the first cathode terminal can be disposed on the first surface of the passive electronic component.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 11, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Belgacem Haba, Ilyas Mohammed, Rajesh Katkar, Gabriel Z. Guevara, Javier A. DeLaCruz, Shaowu Huang, Laura Wills Mirkarimi
  • Patent number: 11610846
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry and a first bonding layer. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over the active circuitry and a second bonding layer on the obstructive material. The second bonding layer can be directly bonded to the first bonding layer without an adhesive. The obstructive material can be configured to obstruct external access to the active circuitry.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: March 21, 2023
    Assignee: Adeia Semiconductor Bonding Technologies Inc.
    Inventors: Belgacem Haba, Javier A. DeLaCruz, Rajesh Katkar, Arkalgud Sitaram
  • Patent number: 11600542
    Abstract: An integrated device package is disclosed. The integrated device package can include an integrated device die, an element, a cavity, and an electrical interconnect. The element can have an antenna structure. The element can be attached to a surface of the integrated device. The cavity can be disposed between the integrated device die and the antenna structure. The electrical interconnect can connect the integrated device die and the antenna structure.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: March 7, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Shaowu Huang, Javier A. DeLaCruz, Liang Wang, Rajesh Katkar, Belgacem Haba
  • Publication number: 20230067677
    Abstract: Bonding tools and related systems are provided for surface cleaning and direct bonding. A bonding tool includes a support configured to hold a first element, and is further configured to bond a second element to the first element by way of direct bonding. A laser cleaning assembly is configured to clean the first and/or second element prior to bonding, and can be integrated with the bonding tool. The laser cleaning can also clean surfaces of the bonding tool and/or a robotic end effector for delivering the second element. Methods and sequences for surface cleaning and direct bonding using the systems are also disclosed.
    Type: Application
    Filed: July 29, 2022
    Publication date: March 2, 2023
    Inventors: Bongsub Lee, Rajesh Katkar
  • Publication number: 20230050150
    Abstract: Aspects of the disclosure relate to forming stacked NAND with multiple memory sections. Forming the stacked NAND with multiple memory sections may include forming a first memory section on a sacrificial substrate. A logic section may be formed on a substrate. The logic section may be bonded to the first memory section. The sacrificial substrate may be removed from the first memory section and a second memory section having a second sacrificial substrate may be formed and bonded to the first memory section.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 16, 2023
    Inventors: Stephen Morein, Javier A. Delacruz, Xu Chang, Belgacem Haba, Rajesh Katkar
  • Publication number: 20230036441
    Abstract: A bonded structure with protective semiconductor elements including a semiconductor element with active circuitry and a protective element including an obstructive layer and/or a protective circuitry layer. The obstructive layer is configured to inhibit external access to at least a portion of the active circuitry. The protective circuitry layer is configured to detect or disrupt external access to the protective element and/or the active circuitry of the semiconductor element. The semiconductor element and the protective element are directly bonded without an adhesive along a bonding interface.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 2, 2023
    Inventors: Belgacem Haba, Laura Wills Mirkarimi, Christopher Aubuchon, Rajesh Katkar
  • Publication number: 20230019869
    Abstract: An optically occlusive protective element for bonded structures, embodiments of which disclosed herein relate to directly bonded structures along a bond interface. Specifically, two elements, a semiconductor element and an occlusive element, may be directly bonded to one another without an intervening adhesive along a bonding interface. The semiconductor element includes active circuitry which, after bonding, is protected by the occlusive element. The occlusive element includes several optically occlusive layers which are arranged to inhibit an optical interrogation of the active circuitry. Such layers may further include occlusive strips which may or may not overlap with other occlusive strips from other occlusive layers when the occlusive layers are stacked vertically.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Laura Wills Mirkarimi, Rajesh Katkar
  • Publication number: 20230005804
    Abstract: A microelectronic assembly having a first side and a second side opposite therefrom is disclosed. The microelectronic assembly may include a microelectronic element having a first face, a second face opposite the first face, a plurality of sidewalls each extending between the first and second faces, and a plurality of element contacts. The microelectronic assembly may also include an encapsulation adjacent the sidewalls of the microelectronic element. The microelectronic assembly may include electrically conductive connector elements each having a first end, a second end remote from the first end, and an edge surface extending between the first and second ends, wherein one of the first end or the second end of each connector element is adjacent the first side of the package. The microelectronic assembly may include a redistribution structure having terminals, the redistribution structure adjacent the second side of the package, the terminals being electrically coupled with the connector elements.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 5, 2023
    Applicant: Invensas Corporation
    Inventor: Rajesh Katkar
  • Publication number: 20220415734
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 29, 2022
    Inventors: Rajesh Katkar, Liang Wang, Cyprian Emeka Uzoh, Shaowu Huang, Guilian Gao, Ilyas Mohammed
  • Patent number: 11515279
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: November 29, 2022
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Liang Wang, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20220375864
    Abstract: Apparatuses and methods are described. This apparatus includes a bridge die having first contacts on a die surface being in a molding layer of a reconstituted wafer. The reconstituted wafer has a wafer surface including a layer surface of the molding layer and the die surface. A redistribution layer on the wafer surface includes electrically conductive and dielectric layers to provide conductive routing and conductors. The conductors extend away from the die surface and are respectively coupled to the first contacts at bottom ends thereof. At least second and third IC dies respectively having second contacts on corresponding die surfaces thereof are interconnected to the bridge die and the redistribution layer. A first portion of the second contacts are interconnected to top ends of the conductors opposite the bottom ends thereof in part for alignment of the at least second and third IC dies to the bridge die.
    Type: Application
    Filed: June 8, 2022
    Publication date: November 24, 2022
    Inventors: Liang Wang, Rajesh Katkar
  • Publication number: 20220367302
    Abstract: A bonded structure is disclosed. The bonded structure can include a first element that has a first bonding surface. The bonded structure can further include a second element that has a second bonding surface. The first and second bonding surfaces are bonded to one another along a bonding interface. The bonded structure can also include an integrated device that is coupled to or formed with the first element or the second element. The bonded structure can further include a channel that is disposed along the bonding interface around the integrated device to define an effectively closed profile The bonded structure can also include a getter material that is disposed in the channel. The getter material is configured to reduce the diffusion of gas into an interior region of the bonded structure.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 17, 2022
    Inventors: Rajesh Katkar, Liang Wang
  • Patent number: 11476213
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: October 18, 2022
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz
  • Publication number: 20220328521
    Abstract: Aspects of the disclosure relate to forming a completed stack of layers. Forming the completed stack of layers may include forming a first stack of layers on a first substrate and forming a second stack of layers on a second substrate. The first stack of layers may be bonded to the second stack of layers. The first or second substrate may be removed. Prior to bonding the first stack of layers and the second stack of layer, one or more holes may be etched in the first stack of layers. After removing the second substrate, one or more holes may be etched in the second stack of layers, wherein each of the one or more holes in the second stack of layers extend into a corresponding hole in the one or more holes in the first stack of layers.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Inventors: Rajesh Katkar, Xu Chang, Belgacem Haba
  • Patent number: 11469214
    Abstract: Aspects of the disclosure relate to forming stacked NAND with multiple memory sections. Forming the stacked NAND with multiple memory sections may include forming a first memory section on a sacrificial substrate. A logic section may be formed on a substrate. The logic section may be bonded to the first memory section. The sacrificial substrate may be removed from the first memory section and a second memory section having a second sacrificial substrate may be formed and bonded to the first memory section.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: October 11, 2022
    Assignee: Xcelsis Corporation
    Inventors: Stephen Morein, Javier A. Delacruz, Xu Chang, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220302058
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220302048
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over at least a portion of the active circuitry. The obstructive material can be configured to obstruct external access to the active circuitry. The bonded structure can include a disruption structure configured to disrupt functionality of the at least a portion of the active circuitry upon debonding of the protective element from the semiconductor element.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220293567
    Abstract: Direct bonded stack structures for increased reliability and improved yields in microelectronics are provided. Structural features and stack configurations are provided for memory modules and 3DICs to reduce defects in vertically stacked dies. Example processes alleviate warpage stresses between a thicker top die and direct bonded dies beneath it, for example. An etched surface on the top die may relieve warpage stresses. An example stack may include a compliant layer between dies. Another stack configuration replaces the top die with a layer of molding material to circumvent warpage stresses. An array of cavities on a bonding surface can alleviate stress forces. One or more stress balancing layers may also be created on a side of the top die or between other dies to alleviate or counter warpage. Rounding of edges can prevent stresses and pressure forces from being destructively transmitted through die and substrate layers. These measures may be applied together or in combinations in a single package.
    Type: Application
    Filed: February 25, 2022
    Publication date: September 15, 2022
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Thomas Workman, Guilian Gao, Gaius Gillman Fountain, JR., Laura Wills Mirkarimi, Belgacem Haba, Gabriel Z. Guevara, Joy Watanabe