Patents by Inventor Ralf Siemieniec

Ralf Siemieniec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10734514
    Abstract: A semiconductor device includes trench structures that extend from a first surface into a semiconductor body. The trench structures include a gate structure and a contact structure that extends through the gate structure, respectively. Transistor mesas are between the trench structures. Each transistor mesa includes a body zone forming a first pn junction with a drift structure and a second pn junction with a source zone. Diode regions directly adjoin one of the contact structures form a third pn junction with the drift structure, respectively.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Romain Esteve, Dethard Peters, Roland Rupp, Ralf Siemieniec
  • Patent number: 10727330
    Abstract: A semiconductor device includes a SiC body having a first surface, a gate trench extending from the first surface into the SiC body and having a first sidewall, a second sidewall opposite the first sidewall, and a bottom, a source region of a first conductivity type formed in the SiC body and adjoining the first sidewall of the gate trench, a drift region of the first conductivity type formed in the SiC body below the source region, a body region of a second conductivity type formed in the SiC body between the source region and the drift region and adjoining the first sidewall of the gate trench, and a diode region of the second conductivity type formed in the SiC body and adjoining the second sidewall and the bottom of the gate trench but not the first sidewall of the gate trench.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: July 28, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Wolfgang Bergner, Romain Esteve, Dethard Peters
  • Patent number: 10727331
    Abstract: A semiconductor device includes a semiconductor substrate having drift and body regions. The drift region includes upper and lower drift regions. An active area includes a plurality of spicular trenches extending through the body region and into the drift region. Each spicular trench in the active area has a lower end which together define a lower end of the upper drift region extending towards a first side and a lower drift region extending from the lower end of the upper drift region towards a second side. The edge termination area includes spicular termination trenches extending at least into the upper drift region. A surface doping region arranged in the upper drift region in the edge termination area extends to the first side, is spaced apart from the lower end of the upper drift region, and has a net doping concentration lower than that of the upper drift region.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 28, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Cedric Ouvrard, Adam Amali, Oliver Blank, Michael Hutzler, David Laforet, Harsh Naik, Ralf Siemieniec, Li Juin Yip
  • Patent number: 10714609
    Abstract: A semiconductor device includes a plurality of gate trenches formed in a first surface of a semiconductor body and extending lengthwise parallel to one another, transistor cells and diode regions formed in a mesa of the semiconductor body between neighboring ones of the gate trenches, and a drift region in the semiconductor body beneath the gate trenches. Each transistor cell includes a source zone and a body region. Each diode region includes a contact portion and a lower doped shielding portion. The source zone forms a first p-n junction with the body region, and the body region forms a second p-n junction with the drift region. The contact region extends to the first surface, and the shielding portion forms a third p-n junction with the drift region. The shielding portion extends under bottoms of the neighboring ones of the gate trenches.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: July 14, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Dethard Peters, Ralf Siemieniec
  • Patent number: 10700182
    Abstract: By using at least one of a processor device and model transistor cells, a set of design parameters for at least one of a transistor cell and a drift structure of a wide band-gap semiconductor device is determined, wherein an on state failure-in-time rate and an off state failure-in-time rate of a gate dielectric of the transistor cell are within a same order of magnitude for a predefined on-state gate-to-source voltage, a predefined off-state gate-to-source voltage, and a predefined off-state drain-to-source voltage.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Wolfgang Bergner, Romain Esteve, Daniel Kueck, Dethard Peters, Ralf Siemieniec, Bernd Zippelius
  • Patent number: 10700172
    Abstract: In an embodiment, a semiconductor device is provided that includes a semiconductor body having a first conductivity type, a first major surface and a second major surface opposite the first major surface, a gate arranged on the first major surface, a body region having a second conductivity type opposite the first conductivity type, the body region extending into the semiconductor body from the first major surface, a source region having the first conductivity type, the source region being arranged in the body region, a buried channel shielding region having the second conductivity type, a contact region having the second conductivity type, and a field plate arranged in a trench extending into the semiconductor body from the first major surface.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Hutzler, Franz Hirler, Ralf Siemieniec
  • Patent number: 10700192
    Abstract: A semiconductor device includes a semiconductor body and at least one device cell integrated in the semiconductor body. Each device cell includes a drift region, a source region, and a body region arranged between the source region and the drift region. A gate trench extends from a first surface of the semiconductor body, through the source and body regions and into the drift region. A diode region extends under the gate trench. A pn junction is formed between the diode and drift regions below the gate trench. A gate electrode arranged in the gate trench is dielectrically insulated from the source, body, diode and drift regions by a gate dielectric. A contact trench spaced apart from the gate trench extends from the first surface into the source region. A source electrode arranged in the contact trench adjoins the source region at a sidewall of the contact trench.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Wolfgang Bergner, Romain Esteve, Dethard Peters
  • Publication number: 20200194544
    Abstract: A semiconductor device includes gate trenches formed in a SiC substrate and extending lengthwise in parallel in a first direction. A trench interval which defines a space between adjacent gate trenches extends in a second direction perpendicular to the first direction. Source regions of a first conductivity type formed in the SiC substrate occupy a first part of the space between adjacent gate trenches. Body regions of a second conductivity type opposite the first conductivity type formed in the SiC substrate and below the source regions occupy a second part of the space between adjacent gate trenches. Body contact regions of the second conductivity type formed in the SiC substrate occupy a third part of the space between adjacent gate trenches. Shielding regions of the second conductivity type formed deeper in the SiC substrate than the body regions adjoin a bottom of at least some of the gate trenches.
    Type: Application
    Filed: February 21, 2020
    Publication date: June 18, 2020
    Inventors: Thomas Aichinger, Wolfgang Bergner, Paul Ellinghaus, Rudolf Elpelt, Romain Esteve, Florian Grasse, Caspar Leendertz, Shiqin Niu, Dethard Peters, Ralf Siemieniec, Bernd Zippelius
  • Publication number: 20200194428
    Abstract: A method for forming a semiconductor device includes: forming, in a silicon carbide layer of a first conductivity type having a first side, a first silicon carbide region and a second silicon carbide region that forms a pn-junction with the first silicon carbide region; forming a contact region that forms an Ohmic contact with the second silicon carbide region; forming a barrier-layer on the contact region and the first silicon carbide region so that a Schottky-junction is formed between the barrier-layer and the first silicon carbide region and so that an Ohmic connection is formed between the barrier-layer and the contact region, the barrier-layer comprising molybdenum nitride; and forming a first metallization on the barrier-layer, and in Ohmic connection with the barrier-layer.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Ralf Siemieniec, Mihai Draghici, Jens Peter Konrath
  • Patent number: 10679983
    Abstract: A semiconductor body having a drift region layer, a body region layer adjoining the drift region layer, and a source region layer adjoining the body region layer and forming a first surface of the semiconductor body is provided. At least two trenches extend from the first surface of the semiconductor body through the source region layer and the body region layer. In each of the trenches a gate electrode and a gate dielectric are formed. Diode regions are directly adjacent to each of the at least two trenches. The diode regions extend from the first surface of the semiconductor body through the source region layer and the body region layer. The diode regions include a first region and a second region. A doping concentration in the diode regions varies such that a doping concentration is higher near the first surface than at the bottom of the trench.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 9, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Dethard Peters, Romain Esteve
  • Publication number: 20200176580
    Abstract: A silicon carbide device includes a silicon carbide substrate having a body region and a source region of a transistor cell. Further, the silicon carbide device includes a titanium carbide gate electrode of the transistor cell.
    Type: Application
    Filed: November 25, 2019
    Publication date: June 4, 2020
    Inventors: Ralf Siemieniec, Thomas Aichinger, Iris Moder, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze, Carsten von Koblinski
  • Publication number: 20200127102
    Abstract: A semiconductor device includes a semiconductor substrate, a transistor cell region formed in the semiconductor substrate and an inner termination region formed in the semiconductor substrate and devoid of transistor cells. The transistor cell region includes a plurality of transistor cells and a gate structure that forms a grid separating transistor sections of the transistor cells from each other, each of the transistor sections including a needle-shaped first field plate structure extending from a first surface into the semiconductor substrate. The inner termination region surrounds the transistor cell region and includes needle-shaped second field plate structures extending from the first surface into the semiconductor substrate. The first field plate structures form a first portion of a regular pattern and the second field plate structures form a second portion of the same regular pattern.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 23, 2020
    Inventors: Ralf Siemieniec, Oliver Blank, Franz Hirler, Michael Hutzler, David Laforet, Cedric Ouvrard, Li Juin Yip
  • Patent number: 10593668
    Abstract: A semiconductor device includes a semiconductor body having a first silicon carbide region and a second silicon carbide region which forms a pn-junction with the first silicon carbide region, a first metallization on a front side of the semiconductor body, a contact region that forms an Ohmic contact with the second silicon carbide region, and a barrier-layer between the first metallization and the contact region and that is in Ohmic connection with the first metallization and the contact region. The barrier-layer forms a Schottky-junction with the first silicon carbide region, and includes molybdenum nitride or tantalum nitride. Additional semiconductor device embodiments and corresponding methods of manufacture are described.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: March 17, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Mihai Draghici, Jens Peter Konrath
  • Patent number: 10586845
    Abstract: According to an embodiment of a semiconductor device, the device includes gate trenches formed in a SiC substrate and extending lengthwise in parallel in a first direction. Rows of source regions of a first conductivity type are formed in the SiC substrate and extend lengthwise in parallel in a second direction which is transverse to the first direction. Rows of body regions of a second conductivity type opposite the first conductivity type are formed in the SiC substrate below the rows of source regions. Rows of body contact regions of the second conductivity type are formed in the SiC substrate. The rows of body contact regions extend lengthwise in parallel in the second direction. First shielding regions of the second conductivity type are formed deeper in the SiC substrate than the rows of body regions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 10, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Wolfgang Bergner, Paul Ellinghaus, Rudolf Elpelt, Romain Esteve, Florian Grasse, Caspar Leendertz, Shiqin Niu, Dethard Peters, Ralf Siemieniec, Bernd Zippelius
  • Patent number: 10566426
    Abstract: A body structure and a drift zone are formed in a semiconductor layer, wherein the body structure and the drift zone form a first pn junction. A silicon nitride layer is formed on the semiconductor layer. A silicon oxide layer is formed from at least a vertical section of the silicon nitride layer by oxygen radical oxidation.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 18, 2020
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Oliver Hellmund, Peter Irsigler, Jens Peter Konrath, David Laforet, Maik Langner, Markus Neuber, Hans-Joachim Schulze, Ralf Siemieniec, Knut Stahrenberg, Olaf Storbeck
  • Publication number: 20200044076
    Abstract: A semiconductor device includes a SiC body having a first surface, a gate trench extending from the first surface into the SiC body and having a first sidewall, a second sidewall opposite the first sidewall, and a bottom, a source region of a first conductivity type formed in the SiC body and adjoining the first sidewall of the gate trench, a drift region of the first conductivity type formed in the SiC body below the source region, a body region of a second conductivity type formed in the SiC body between the source region and the drift region and adjoining the first sidewall of the gate trench, and a diode region of the second conductivity type formed in the SiC body and adjoining the second sidewall and the bottom of the gate trench but not the first sidewall of the gate trench.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Ralf Siemieniec, Wolfgang Bergner, Romain Esteve, Dethard Peters
  • Patent number: 10553685
    Abstract: A semiconductor device includes a trench extending from a first surface into a SiC semiconductor body. The trench has a first sidewall, a second sidewall opposite to the first sidewall, and a trench bottom. A gate electrode is arranged in the trench and is electrically insulated from the SiC semiconductor body by a trench dielectric. A body region of a first conductivity type adjoins the first sidewall. A shielding structure of the first conductivity type adjoins at least a portion of the second sidewall and the trench bottom. A first section of the trench bottom and a second section of the trench bottom are offset to one another by a vertical offset along a vertical direction extending from the first surface to a second surface of the SiC semiconductor body opposite to the first surface.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: February 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Thomas Aichinger, Romain Esteve, Daniel Kueck
  • Publication number: 20200013723
    Abstract: A silicon carbide device includes a silicon carbide substrate, a contact layer including nickel, silicon and aluminum, a barrier layer structure including titanium and tungsten, and a metallization layer including copper. The contact layer is located on the silicon carbide substrate. The contact layer is located between the silicon carbide substrate and at least a part of the barrier layer structure. The barrier layer structure is located between the silicon carbide substrate and the metallization layer.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 9, 2020
    Inventors: Edward Fuergut, Ravi Keshav Joshi, Ralf Siemieniec, Thomas Basler, Martin Gruber, Jochen Hilsenbeck, Dethard Peters, Roland Rupp, Wolfgang Scholz
  • Publication number: 20200006544
    Abstract: A semiconductor device includes a silicon carbide body including a transistor cell region and an idle region. The transistor cell region includes transistor cells. The idle region is devoid of transistor cells. The idle region includes a transition region between the transistor cell region and a side surface of the silicon carbide body, a gate pad region, and a diode structure comprising at least one of a merged pin Schottky diode structure or a merged pin heterojunction diode structure in at least one of the transition region or the gate pad region.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Ralf SIEMIENIEC, Thomas AICHINGER, Wolfgang BERGNER, Romain ESTEVE, Daniel KUECK, Dethard PETERS, Bernd ZIPPELIUS
  • Publication number: 20200006495
    Abstract: A semiconductor device includes transistor cells in a semiconductor portion, wherein the transistor cells are electrically connected to a gate metallization, a source electrode and a drain electrode. In one example, the semiconductor device further includes a doped region in the semiconductor portion. The doped region is electrically connected to the source electrode. A resistance of the doped region has a negative temperature coefficient. An interlayer dielectric separates the gate metallization from the doped region. A drain structure in the semiconductor portion electrically connects the transistor cells with the drain electrode and forms a pn junction with the doped region.
    Type: Application
    Filed: June 14, 2019
    Publication date: January 2, 2020
    Applicant: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Dethard Peters