Patents by Inventor Ralf Siemieniec

Ralf Siemieniec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395663
    Abstract: A semiconductor component includes: gate structures extending into a silicon carbide body from a first surface and having a width along a first horizontal direction parallel to the first surface that is less than a vertical extent of the gate structures perpendicular to the first surface; contact structures extending into the silicon carbide body from the first surface, the gate and contact structures alternating along the first horizontal direction; shielding regions which, in the silicon carbide body, adjoin a bottom of the contact structures and are spaced apart from the gate structures along the first horizontal direction; and source regions between the first surface and body regions. The body regions form pn junctions with the source regions and include main sections adjoining the gate structures and contact sections adjoining the contact structures. A vertical extent of the contact structures is greater than the vertical extent of the gate structures.
    Type: Application
    Filed: May 15, 2023
    Publication date: December 7, 2023
    Inventors: Thomas Ralf Siemieniec, Wolfgang Bergner
  • Publication number: 20230326974
    Abstract: A semiconductor diode includes a wide bandgap semiconductor body having opposing first and second surfaces. The wide band gap semiconductor body includes a first pn junction diode having a first p-doped region adjoining the first surface and a first n-doped region adjoining both surfaces. The semiconductor diode further includes a semiconductor element including a second pn junction diode having a second p-doped region and second n-doped region, and a dielectric structure between the wide bandgap semiconductor body and semiconductor element. The dielectric structure electrically insulates the wide bandgap semiconductor body from the semiconductor element. The bandgap energy of the semiconductor element is smaller than that of the wide bandgap semiconductor body. A cathode contact is electrically connected to the first n-doped region at the second surface. The second n-doped region of the second pn junction diode is electrically coupled to the first n-doped region of the first pn junction diode.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 12, 2023
    Inventors: Thomas Ralf Siemieniec, Joachim Weyers, Armin Tilke
  • Patent number: 11742391
    Abstract: A semiconductor component includes a semiconductor component, including: a merged PiN Schottky (MPS) diode structure in a SiC semiconductor body having a drift zone of a first conductivity type; an injection region of a second conductivity type adjoining a first surface of the SiC semiconductor body; a contact structure at the first surface, the contact structure forming a Schottky contact with the drift zone and electrically contacting the injection region; and a zone of the first conductivity type formed between the injection region and a second surface of the SiC semiconductor body, the second surface being situated opposite the first surface. The zone is at a maximal distance of 1 ?m from the injection region of the second conductivity type.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 29, 2023
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Hans-Joachim Schulze, Ralf Siemieniec
  • Patent number: 11735633
    Abstract: A silicon carbide device includes a silicon carbide body having a hexagonal crystal lattice with a c-plane and with further main planes. The further main planes include a-planes and m-planes. A mean surface plane of the silicon carbide body is tilted to the c-plane by an off-axis angle. The silicon carbide body includes a columnar portion with column sidewalls. At least three of the column sidewalls are oriented along a respective one of the further main planes. A trench gate structure is in contact with the at least three of the column sidewalls.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: August 22, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Rudolf Elpelt, Anton Mauder
  • Publication number: 20230253454
    Abstract: A method of manufacturing a semiconductor device includes forming a trench that extends from a first surface into a silicon carbide body. A first doped region and an oppositely doped second doped region are formed in the silicon carbide body. A lower layer structure is formed on a lower sidewall portion of the trench. An upper layer stack is formed on an upper sidewall portion and/or on the first surface. The first doped region and the upper layer stack are in direct contact along the upper sidewall portion and/or on the first surface. The second doped region and the lower layer structure are in direct contact along the lower sidewall portion.
    Type: Application
    Filed: January 23, 2023
    Publication date: August 10, 2023
    Inventors: Ravi Keshav Joshi, Thomas Ralf Siemieniec, Werner Schustereder, Kristijan Luka Mletschnig, Axel König
  • Publication number: 20230246071
    Abstract: The application relates to a semiconductor transistor device, having a source region, a body region including a channel region extending in a vertical direction, a drain region, a gate region arranged aside the channel region in a lateral direction, and a body contact region made of an electrically conductive material, wherein the body contact region forms a body contact area, the body contact region being in an electrical contact with the body region via the body contact area, and wherein the body contact area is tilted with respect to the vertical direction and the lateral direction.
    Type: Application
    Filed: April 5, 2023
    Publication date: August 3, 2023
    Inventors: Li Juin Yip, Oliver Blank, Heimo Hofer, Michael Hutzler, Thomas Ralf Siemieniec
  • Patent number: 11682703
    Abstract: A method of producing a semiconductor device includes: forming, in a semiconductor substrate, a drift region of a first conductivity type, a body region of a second conductivity type above the drift region, and a source region of the first conductivity type separated from the drift region by the body region; forming rows of spicular-shaped field plate structures in the semiconductor substrate, the spicular-shaped field plate structures extending through the source region and the body region into the drift region; forming stripe-shaped gate structures in the semiconductor substrate and separating adjacent rows of the spicular-shaped field plate structures; and forming a current spread region of the first conductivity type below the body region in semiconductor mesas between adjacent ones of the spicular-shaped field plate structures and which are devoid of the stripe-shaped gate structures, the current spread region configured to increase channel current distribution in the semiconductor mesas.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Michael Hutzler
  • Publication number: 20230178647
    Abstract: In an embodiment, a transistor device a semiconductor substrate having a main surface, and a cell field including a plurality of transistor cells of a power transistor. The cell field further includes: a body region of a second conductivity type; a source region of a first conductivity type on or in the body region, the first conductivity type opposing the second conductivity type; a gate trench in the main surface of the semiconductor substrate; a gate dielectric lining the gate trench; a metal gate electrode arranged in the gate trench on the gate dielectric; and an electrically insulating cap arranged on the metal gate electrode. A method of fabricating a gate of the transistor device is also described.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Inventors: Ingmar Neumann, Michael Hutzler, David Laforet, Roland Moennich, Thomas Ralf Siemieniec
  • Patent number: 11670684
    Abstract: The application relates to a semiconductor transistor device, having a source region, a body region including a channel region extending in a vertical direction, a drain region, a gate region arranged aside the channel region in a lateral direction, and a body contact region made of an electrically conductive material, wherein the body contact region forms a body contact area, the body contact region being in an electrical contact with the body region via the body contact area, and wherein the body contact area is tilted with respect to the vertical direction and the lateral direction.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: June 6, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Li Juin Yip, Oliver Blank, Heimo Hofer, Michael Hutzler, Ralf Siemieniec
  • Patent number: 11626477
    Abstract: A semiconductor component includes: gate structures extending from a first surface into an SiC semiconductor body; a drift zone of a first conductivity type formed in the SiC semiconductor body; first mesas and second mesas arranged between the gate structures in the SiC semiconductor body; body areas of a second conductivity type arranged in the first mesas and the second mesas, the body areas each adjoining a first side wall of one of the gate structures; first shielding areas of the second conductivity type adjoining a second side wall of one of the gate structures; second shielding areas of the second conductivity type adjoining the body areas in the second mesas; and diode areas of the conductivity type of the drift zone, the diode areas forming Schottky contacts with a load electrode between the first shielding areas and the second shielding areas.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 11, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Thomas Aichinger, Thomas Basler, Wolfgang Bergner, Rudolf Elpelt, Romain Esteve, Michael Hell, Daniel Kueck, Caspar Leendertz, Dethard Peters, Hans-Joachim Schulze
  • Patent number: 11600723
    Abstract: In an embodiment, a transistor device includes a semiconductor substrate having a main surface, a cell field including a plurality of transistor cells, and an edge termination region laterally surrounding the cell field. The cell field includes a gate trench in the main surface of the semiconductor substrate, a gate dielectric lining the gate trench, a metal gate electrode arranged in the gate trench on the gate dielectric, and an electrically insulating cap arranged on the metal gate electrode and within the gate trench.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 7, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Ingmar Neumann, Michael Hutzler, David Laforet, Roland Moennich, Ralf Siemieniec
  • Publication number: 20230049364
    Abstract: A transistor device and a method for producing thereof are disclosed. The transistor device includes: a SiC semiconductor body that includes a first semiconductor layer; a plurality of trenches each extending from a first surface of the first semiconductor layer into the first semiconductor layer; and a plurality of transistor cells each coupled to a source node. The first semiconductor layer includes a plurality of mesa regions each formed between two neighboring ones of the trenches, in each of the mesa regions, at least one of the plurality of transistor cells is at least partially integrated, each of the transistor cells is connected to the source node via a respective source contact, and each of the source contacts is arranged in a respective one of the trenches and is spaced apart from a bottom of the respective trench.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 16, 2023
    Inventors: Caspar Leendertz, Ralf Siemieniec
  • Publication number: 20230024105
    Abstract: The present disclosure relates to methods of manufacturing Ohmic contacts on a silicon carbide (SiC) substrate including providing a 4H—SiC or 6H—SiC substrate, implanting dopants into a surface region of the 4H—SiC or 6H—SiC substrate, annealing the implanted surface regions to form a 3C—SiC layer, and depositing a metal layer on the 3C—SiC layer. An implanting sequence of the implantation of dopants includes a plurality of plasma deposition acts with implantation energy levels including at least two different implantation energy levels. The implantation energy levels and one or more implantation doses of the plurality of plasma deposition acts are selected to form a 3C—SiC layer in the surface region of the 4H—SiC or 6H—SiC substrate during the annealing act.
    Type: Application
    Filed: July 20, 2022
    Publication date: January 26, 2023
    Inventors: Werner SCHUSTEREDER, Ravi Keshav JOSHI, Hans-Joachim SCHULZE, Ralf SIEMIENIEC, Axel KOENIG
  • Publication number: 20220406928
    Abstract: A semiconductor device includes a transistor cell with a source region of a first conductivity type and a gate electrode. The source region is formed in a wide bandgap semiconductor portion. A diode chain includes a plurality of diode structures. The diode structures are formed in the wide bandgap semiconductor portion and electrically connected in series. Each diode structure includes a cathode region of the first conductivity type and an anode region of a complementary second conductivity type. A gate metallization is electrically connected with the gate electrode and with a first one of the anode regions in the diode chain. A source electrode structure is electrically connected with the source region and with a last one of the cathode regions in the diode chain.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 22, 2022
    Inventors: Joachim Weyers, Anton Mauder, Ralf Siemieniec, Guang Zeng
  • Publication number: 20220376062
    Abstract: A semiconductor device includes a transistor cell region, and a first termination region devoid of transistor cells. The transistor cell region includes a gate structure, a plurality of needle-shaped first field plate structures, body regions of a second conductivity type, and source regions of a first conductivity type. The first termination region surrounds the transistor cell region and includes needle-shaped second field plate structures. The needle-shaped first field plate structures are arranged in a first pattern and the needle-shaped second field plate structures are arranged in a second pattern.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Ralf Siemieniec, Oliver Blank, Franz Hirler, Michael Hutzler, David Laforet, Cédric Ouvrard, Li Juin Yip
  • Patent number: 11462620
    Abstract: A semiconductor device includes a semiconductor substrate, a transistor cell region formed in the semiconductor substrate and an inner termination region formed in the semiconductor substrate and devoid of transistor cells. The transistor cell region includes a gate structure extending from a first surface into the semiconductor substrate, a plurality of needle-shaped first field plate structures extending from the first surface into the semiconductor substrate, body regions of a second conductivity type, and source regions of a first conductivity type formed between the body regions and the first surface. The inner termination region surrounds the transistor cell region and includes needle-shaped second field plate structures extending from the first surface into the semiconductor substrate. The needle-shaped first field plate structures are arranged in a first pattern and the needle-shaped second field plate structures are arranged in a second pattern.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 4, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Oliver Blank, Franz Hirler, Michael Hutzler, David Laforet, Cédric Ouvrard, Li Juin Yip
  • Patent number: 11462611
    Abstract: A semiconductor device includes gate trenches formed in a SiC substrate and extending lengthwise in parallel in a first direction. A trench interval which defines a space between adjacent gate trenches extends in a second direction perpendicular to the first direction. Source regions of a first conductivity type formed in the SiC substrate occupy a first part of the space between adjacent gate trenches. Body regions of a second conductivity type opposite the first conductivity type formed in the SiC substrate and below the source regions occupy a second part of the space between adjacent gate trenches. Body contact regions of the second conductivity type formed in the SiC substrate occupy a third part of the space between adjacent gate trenches. Shielding regions of the second conductivity type formed deeper in the SiC substrate than the body regions adjoin a bottom of at least some of the gate trenches.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: October 4, 2022
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Wolfgang Bergner, Paul Ellinghaus, Rudolf Elpelt, Romain Esteve, Florian Grasse, Caspar Leendertz, Shiqin Niu, Dethard Peters, Ralf Siemieniec, Bernd Zippelius
  • Publication number: 20220285283
    Abstract: A power semiconductor device includes a semiconductor substrate having a wide bandgap semiconductor material and a first surface, an insulation layer above the first surface of the semiconductor substrate, the insulation layer including at least one opening extending through the insulation layer in a vertical direction, a front metallization above the insulation layer with the insulation layer being interposed between the front metallization and the first surface of the semiconductor substrate, and a metal connection arranged in the opening of the insulation layer and electrically conductively connecting the front metallization with the semiconductor substrate; wherein the front metallization includes at least one layer that is a metal or a metal alloy having a higher melting temperature than an intrinsic temperature of the wide bandgap semiconductor material of the semiconductor substrate.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Inventors: Edward Fuergut, Ravi Keshav Joshi, Ralf Siemieniec, Thomas Basler, Martin Gruber, Jochen Hilsenbeck, Dethard Peters, Roland Rupp, Wolfgang Scholz
  • Publication number: 20220262906
    Abstract: A silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) and a method for forming a SiC MOSFET are disclosed. In an example, the method includes forming a gate dielectric that adjoins a body region arranged in a semiconductor body, and forming a gate electrode on the gate dielectric. Forming the gate electrode includes forming a first electrode layer, implanting work function adjusting atoms into the first electrode layer, and forming a second electrode layer on the first electrode layer.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 18, 2022
    Inventors: Ralf SIEMIENIEC, Thomas AICHINGER, Ravi Keshav JOSHI, Werner SCHUSTEREDER
  • Patent number: 11417747
    Abstract: In an example, a transistor device is provided. The transistor device includes a plurality of transistor cells each including a gate electrode and each at least partially integrated in a semiconductor body that includes a wide bandgap semiconductor material. The transistor device includes a gate pad arranged on top of the semiconductor body, and a plurality of gate runners each arranged on top of the semiconductor body and each connected to gate electrodes of at least some of the plurality of transistor cells. Each gate runner of the plurality of gate runners has a longitudinal direction, and at least one of the gate runners includes at least a section in which a resistivity per area increases in the longitudinal direction as a distance to the gate pad along the gate runner increases.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 16, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Aichinger, Wolfgang Bergner, Ralf Siemieniec, Frank Wolter