Patents by Inventor Robert L. Wisnieff

Robert L. Wisnieff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8278155
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 2, 2012
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 8247271
    Abstract: A structure fabrication method. First, an integrated circuit including N chip electric pads is provided electrically connected to a plurality of devices on the integrated circuit. Then, an interposing shield having a top side and a bottom side and having N electric conductors in the interposing shield is provided being exposed to a surrounding ambient at the top side but not at the bottom side. Next, the integrated circuit is bonded to the top side of the interposing shield such that the N chip electric pads are in electrical contact with the N electric conductors. Next, the bottom side of the interposing shield is polished so as to expose the N electric conductors to the surrounding ambient at the bottom side of the interposing shield. Then, N solder bumps are formed on the polished bottom side of the interposing shield and in electrical contact with the N electric conductors.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Paul Stephen Andry, Cyril Cabral, Jr., Kenneth P. Rodbell, Robert L. Wisnieff
  • Patent number: 8212218
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Publication number: 20120112164
    Abstract: A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos D. Dimitrakopoulos, Marcus O. Freitag, Alfred Grill, Timothy J. McArdle, Robert L. Wisnieff
  • Publication number: 20120112198
    Abstract: remove impurities from an exposed surface in the ultrahigh vacuum environment. A high qualify single crystalline or polycrystalline silicon carbide film can be grown directly on the sapphire substrate by chemical vapor deposition employing a silicon-containing reactant and a carbon-containing reactant. Formation of single crystalline silicon carbide has been verified by x-ray diffraction, secondary ion mass spectroscopy, and transmission electron microscopy.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos D. Dimitrakopoulos, Alfred Grill, Timothy J. McArdle, Katherine L. Saenger, Robert L. Wisnieff, Yu Zhu
  • Publication number: 20120085991
    Abstract: The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy Cohen, Christos D. Dimitrakopoulos, Alfred Grill, Robert L. Wisnieff
  • Publication number: 20120049161
    Abstract: A surface of a single crystalline semiconductor-carbon alloy layer having a surface normal along or close to a major crystallographic direction is provided by mechanical means such as cutting and/or polishing. Such a surface has naturally formed irregular surface features. Small semiconductor islands are deposited on the surface of single crystalline semiconductor-carbon alloy layer. Another single crystalline semiconductor-carbon alloy structure may be placed on the small semiconductor islands, and the assembly of the two semiconductor-carbon alloy layers with the semiconductor islands therebetween is annealed. During the initial phase of the anneal, surface diffusion of the semiconductor material proceeds to form vicinal surfaces while graphitization is suppressed because the space between the two semiconductor-carbon alloy layers maintains a high vapor pressure of the semiconductor material.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Marcus O. Freitag, Alfred Grill, Robert L. Wisnieff
  • Publication number: 20120028052
    Abstract: A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos Dimitrakopoulos, Marcus O. Freitag, Alfred Grill, Timothy J. McArdle, Chun-Yung Sung, Robert L. Wisnieff
  • Publication number: 20110207286
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 7960808
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Publication number: 20110127438
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Patent number: 7927895
    Abstract: A method for determining resistances of defects in a test structure, comprising: forming a first layer of the test structure having elements under test; generating a first e-beam image of the first layer, the first e-beam image graphically identifying defects detected at the first layer, each defect at the first layer having a corresponding grey scale level; adding capacitance to the structure by forming a metal layer of the structure; generating a second e-beam image of the metal layer, the second e-beam image graphically identifying defects detected at the metal layer, each defect at the metal layer having a corresponding grey scale level; generating a pattern of grey scale levels for each defect based on the corresponding grey scale level of each defect at each layer of the test structure; and determining a resistive range of each defect based on the pattern of grey scale levels generated for each defect.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Conal E. Murray, Oliver D. Patterson, Robert L. Wisnieff
  • Publication number: 20110080180
    Abstract: A method for determining resistances of defects in a test structure, comprising: forming a first layer of the test structure having elements under test; generating a first e-beam image of the first layer, the first e-beam image graphically identifying defects detected at the first layer, each defect at the first layer having a corresponding grey scale level; adding capacitance to the structure by forming a metal layer of the structure; generating a second e-beam image of the metal layer, the second e-beam image graphically identifying defects detected at the metal layer, each defect at the metal layer having a corresponding grey scale level; generating a pattern of grey scale levels for each defect based on the corresponding grey scale level of each defect at each layer of the test structure; and determining a resistive range of each defect based on the pattern of grey scale levels generated for each defect.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Lavoie, Conal E. Murray, Oliver D. Patterson, Robert L. Wisnieff
  • Publication number: 20110026806
    Abstract: An emission map of a circuit to be tested for alterations is obtained by measuring the physical circuit to be tested. An emission map of a reference circuit is obtained by measuring a physical reference circuit or by simulating the emissions expected from the reference circuit. The emission map of the circuit to be tested is compared with the emission map of the reference circuit, to determine presence of alterations in the circuit to be tested, as compared to the reference circuit.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kerry Bernstein, James Culp, David F. Heidel, Dirk Pfeiffer, Anthony D. Polson, Peilin Song, Franco Stellari, Robert L. Wisnieff
  • Publication number: 20100006850
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: September 17, 2009
    Publication date: January 14, 2010
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Publication number: 20090181534
    Abstract: An ultra low-k dielectric material layer is formed on a semiconductor substrate. In one embodiment, a grid of wires is placed at a distance above a top surface of the ultra low-k dielectric material layer and is electrically biased such that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. In another embodiment, a polymeric conductive layer is formed directly on the ultra low-k dielectric material layer and is electrically biased so that the total electron emission coefficient becomes 1.0 at the energy of electrons employed in electron beam curing of the ultra low-k dielectric material layer. By maintaining the total electron emission coefficient at 1.0, charging of the substrate is avoided, thus protecting any device on the substrate from any adverse changes in electrical characteristics.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 16, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Kam L. Lee, Robert L. Wisnieff
  • Publication number: 20090108212
    Abstract: Personal radiation detection devices, methods of obtaining radiation exposure data, and networks of personal radiation devices. The detection devices may include passive devices and active devices. The passive detection devices may have the same form factor as credit cards or be included in common types of credit card form factor sized cards.
    Type: Application
    Filed: December 2, 2008
    Publication date: April 30, 2009
    Inventors: Michael S. Gordon, Kenneth P. Rodbell, Robert L. Wisnieff
  • Patent number: 7491948
    Abstract: A method of detecting and transmitting radiation detection information to a network. The method including: communicating with one or more personal radiation detection devices, each device including, a host memory, an event memory, a microprocessor, a global positioning unit and a transceiver or a transmitter; a radiation shield around the host memory and the event memory; a radiation detection memory, the radiation detection memory, responsive to alpha radiation and including two or more SRAM arrays including cross-coupled invertors coupled to wordlines through different value capacitors; a conversion device including a material able to convert neutron and/or gamma radiation into alpha radiation; and an event detection circuit configured to detect and to store data relative to detection of the alpha radiation events by the radiation detection memory; storing the data in the event memory; and retrieving, in a reading device of the network, the data stored in the event memory.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Michael S. Gordon, Kenneth P. Rodbell, Robert L. Wisnieff
  • Publication number: 20080318365
    Abstract: A structure fabrication method. First, an integrated circuit including N chip electric pads is provided electrically connected to a plurality of devices on the integrated circuit. Then, an interposing shield having a top side and a bottom side and having N electric conductors in the interposing shield is provided being exposed to a surrounding ambient at the top side but not at the bottom side. Next, the integrated circuit is bonded to the top side of the interposing shield such that the N chip electric pads are in electrical contact with the N electric conductors. Next, the bottom side of the interposing shield is polished so as to expose the N electric conductors to the surrounding ambient at the bottom side of the interposing shield. Then, N solder bumps are formed on the polished bottom side of the interposing shield and in electrical contact with the N electric conductors.
    Type: Application
    Filed: August 28, 2008
    Publication date: December 25, 2008
    Inventors: Paul Stephen Andry, Cyril Cabral, JR., Kenneth P. Rodbell, Robert L. Wisnieff
  • Publication number: 20080308747
    Abstract: Personal radiation detection devices, methods of obtaining radiation exposure data, and networks of personal radiation devices. The detection devices may include passive devices and active devices. The passive detection devices may have the same form factor as credit cards or be included in common types of credit card form factor sized cards. The active devices may be incorporated into common and widely distributed host devices.
    Type: Application
    Filed: January 30, 2006
    Publication date: December 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: Michael S. Gordon, Kenneth P. Rodbell, Robert L. Wisnieff