Patents by Inventor Rolf Freimann

Rolf Freimann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050223539
    Abstract: A method of manufacturing an optical component comprising a substrate and a mounting frame with plural contact portions disposed at predetermined distances from each other is provided. The method comprises providing a measuring frame separate from the mounting frame for mounting the substrate, which measuring frame comprises a number of contact portions equal to a number of the contact portions of the mounting frame, wherein respective distances between the contact portions of the measuring frame are substantially equal to the corresponding distances between those of the mounting frame, measuring a shape of the optical surface of the substrate, while the substrate is mounted on the measuring frame, and mounting the substrate on the mounting frame such that the contact portions of the mounting frame are attached to the substrate at regions which are substantially the same as contact regions at which the substrate was attached to the measuring frame.
    Type: Application
    Filed: April 12, 2004
    Publication date: October 13, 2005
    Applicant: Carl Zeiss SMT AG
    Inventors: Bernhard Geuppert, Jens Kugler, Thomas Ittner, Bernd Geh, Rolf Freimann, Guenther Seitz, Bernhard Fellner, Bernd Doerband, Stefan Schulte
  • Publication number: 20050225774
    Abstract: A method of processing an optical element comprises testing the optical surface of the optical element using an interferometer optics for generating a beam of measuring light; wherein the interferometer optics has a plurality of optical elements which are configured and arranged such that the measuring light is substantially orthogonally incident on a reflecting surface, at each location thereof; and wherein the method further comprises: measuring at least one property of the interferometer optics, disposing the optical surface of the optical element at a measuring position relative to the interferometer optics within the beam of measuring light, and performing at least one interferometric measurement; determining deviations of the optical surface of the first optical element from a target shape thereof, based on the interferometric measurement and the at least one measured property of the interferometer optics.
    Type: Application
    Filed: April 5, 2005
    Publication date: October 13, 2005
    Applicant: Carl Zeiss SMT AG
    Inventors: Rolf Freimann, Susanne Beder, Guenther Seitz, Frank Schillke, Bernd Doerband, Heinz Martin, Franz Krug
  • Patent number: 6940607
    Abstract: In the case of a method for absolute calibration of an interferometer with the aid of a spherical output wave, comprising an optical element which retroflects the incident spherical wave itself or via a mirror, at least four measuring procedures are undertaken to determine a wave aberration W. The optical element is measured in the at least four measuring positions intrafocally and extrafocally in at least two different rotational angle positions. It is also possible, in addition, to undertake a measurement via a mirror in the cat's eye position (focus 3).
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: September 6, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Rolf Freimann, Maximilian Mayer, Stephan Reichelt
  • Publication number: 20040174531
    Abstract: A system for interferometric fit testing of a specimen having an aspherical surface in reflection, the specimen being a segment (2) (footprint) of a rotationally symmetrical basic body (1) (parent), comprises an interferometer (3) and a diffractive optical element (DOE) (5). An optical axis of the interferometer (3) in the beam direction behind the diffractive optical element (5) and an axis of rotation of the basic body (1) form an angle that differs from zero. The diffractive optical element (5) is designed in such a way that the rays produced by the interferometer (3) and falling into the diffractive optical element (5) strike the specimen (2) perpendicularly and from there run back in themselves.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 9, 2004
    Applicant: Carl Zeiss SMT AG
    Inventor: Rolf Freimann
  • Publication number: 20030223081
    Abstract: In a method for calibrating a radius test bench for measuring radii of optical elements, in particular of lenses and spherical mirrors, there are provided an illuminating system 1 that generates a spherical wave and a diffractive optical element 3 that retroreflects a spherical wave of a specific radius into itself. The diffractive optical element 3 is introduced into the radius test bench in at least two positions, a first position thereof being a cat's eye position 1 and another position being an autocollimation position, as a result of which it is possible to use the radius of curvature simulated by the diffractive optical element 3 to detect deviations of the radius test bench from this radius of curvature as errors of the radius test bench, and thus to take them into account in the measurements of optical elements to be tested.
    Type: Application
    Filed: April 22, 2003
    Publication date: December 4, 2003
    Applicant: Carl Zeiss SMT AG
    Inventor: Rolf Freimann
  • Publication number: 20030025915
    Abstract: In the case of a method for absolute calibration of an interferometer with the aid of a spherical output wave, comprising an optical element which retroflects the incident spherical wave itself or via a mirror, at least four measuring procedures are undertaken to determine a wave aberration W. The optical element is measured in the at least four measuring positions intrafocally and extrafocally in at least two different rotational angle positions. It is also possible, in addition, to undertake a measurement via a mirror in the cat's eye position (focus 3).
    Type: Application
    Filed: May 21, 2002
    Publication date: February 6, 2003
    Inventors: Rolf Freimann, Maximilian Mayer, Stephan Reichelt