Patents by Inventor Rongjun Wang

Rongjun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11251364
    Abstract: Embodiments herein provide film stacks that include a buffer layer; a synthetic ferrimagnet (SyF) coupling layer; and a capping layer, wherein the capping layer comprises one or more layers, and wherein the capping layer, the buffer layer, the SyF coupling layer, or a combination thereof, is not fabricated from Ru.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Chi Hong Ching, Jaesoo Ahn, Mahendra Pakala, Rongjun Wang
  • Patent number: 11245069
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for spin-transfer-torque magnetoresistive random access memory (STT-MRAM) applications. In one embodiment, the method includes patterning a film stack having a tunneling barrier layer disposed between a magnetic reference layer and a magnetic storage layer disposed on a substrate to remove a portion of the film stack from the substrate until an upper surface of the substrate is exposed, forming a sidewall passivation layer on sidewalls of the patterned film stack and subsequently performing a thermal annealing process to the film stack.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Jaesoo Ahn, Mahendra Pakala, Chi Hong Ching, Rongjun Wang
  • Publication number: 20220020577
    Abstract: Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 11227751
    Abstract: Methods and apparatus for plasma chamber target for reducing defects in workpiece during dielectric sputtering are provided. For example, a dielectric sputter deposition target can comprise a dielectric compound having a predefined average grain size ranging from approximately 65 ?m to 500 ?m, wherein the dielectric compound is at least one of magnesium oxide or aluminum oxide.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: January 18, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaodong Wang, Jianxin Lei, Rongjun Wang
  • Publication number: 20220013716
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for spin-transfer-torque magnetoresistive random access memory (STT-MRAM) applications. In one example, a film stack utilized to form a magnetic tunnel junction structure on a substrate includes a pinned layer disposed on a substrate, wherein the pinned layer comprises multiple layers including at least one or more of a Co containing layer, Pt containing layer, Ta containing layer, an Ru containing layer, an optional structure decoupling layer disposed on the pinned magnetic layer, a magnetic reference layer disposed on the optional structure decoupling layer, a tunneling barrier layer disposed on the magnetic reference layer, a magnetic storage layer disposed on the tunneling barrier layer, and a capping layer disposed on the magnetic storage layer.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Lin XUE, Jaesoo AHN, Mahendra PAKALA, Chi Hong CHING, Rongjun WANG
  • Publication number: 20220005679
    Abstract: Methods and apparatus for plasma chamber target for reducing defects in workpiece during dielectric sputtering are provided. For example, a dielectric sputter deposition target can comprise a dielectric compound having a predefined average grain size ranging from approximately 65 ?m to 500 ?m, wherein the dielectric compound is at least one of magnesium oxide or aluminum oxide.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 6, 2022
    Inventors: Xiaodong WANG, Jianxin LEI, Rongjun WANG
  • Patent number: 11196032
    Abstract: A short stress path-type electrode sheet rolling machine and an integrated machine equipment for manufacturing lithium battery electrode sheets, whereby the rolling machine comprises: an upper roller mechanism, a lower roller mechanism, an upper bearing base, a lower bearing base and a roller-gap adjusting mechanism; the upper roller mechanism is connected to the upper bearing base, and the lower roller mechanism is connected to the lower bearing base; the upper bearing base and the lower bearing base are connected by means of a guide shaft; the roller-gap adjusting mechanism is connected to the upper roller mechanism so as to adjust a roller gap between the upper roller mechanism and the lower roller mechanism. The rolling machine has a simpler and more reliable structure, has a shorter stress return path when performing electrode sheet rolling, and may improve rolling precision and rolling quality.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: December 7, 2021
    Assignee: TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Xiaozhong Du, Rongjun Wang, Jinpeng Wang, Yanjie Zhang, Yang Tong, Yiling Yue, Jiamin Zhang
  • Publication number: 20210328104
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20210320247
    Abstract: Embodiments of the disclosure provide methods for forming MTJ structures from a film stack disposed on a substrate for MRAM applications and associated MTJ devices. The methods described herein include forming the film properties of material layers from the film stack to create a film stack with a sufficiently high perpendicular magnetic anisotropy (PMA). An iron containing oxide capping layer is utilized to generate the desirable PMA. By utilizing an iron containing oxide capping layer, thickness of the capping layer can be more finely controlled and reliance on boron at the interface of the magnetic storage layer and the capping layer is reduced.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 14, 2021
    Inventors: Lin XUE, Chi Hong CHING, Xiaodong WANG, Mahendra PAKALA, Rongjun WANG
  • Publication number: 20210319989
    Abstract: Methods and apparatus for cleaning a process kit configured for processing a substrate are provided. For example, a process chamber for processing a substrate can include a chamber wall; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an ACT connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 14, 2021
    Inventors: Halbert CHONG, Rong TAO, Jianxin LEI, Rongjun WANG, Keith A. Miller, Irena H. Wysok, Tza-Jing Gung, Xing Chen
  • Publication number: 20210320246
    Abstract: A method of forming a tunnel layer of a magnetoresistive random-access memory (MRAM) structure includes forming a first magnesium oxide (MgO) layer by sputtering an MgO target using radio frequency (RF) power, exposing the first MgO layer to oxygen for approximately 5 seconds to approximately 20 seconds at a flow rate of approximately 10 sccm to approximately 15 sccm, and forming a second MgO layer on the first MgO layer by sputtering the MgO target using RF power. The method may be performed after periodic maintenance of a process chamber to increase the tunnel magnetoresistance (TMR) of the tunnel layer.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 14, 2021
    Inventors: Xiaodong WANG, Renu WHIG, Jianxin LEI, Rongjun WANG
  • Patent number: 11133460
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for spin-transfer-torque magnetoresistive random access memory (STT-MRAM) applications. In one example, a film stack utilized to form a magnetic tunnel junction structure on a substrate includes a pinned layer disposed on a substrate, wherein the pinned layer comprises multiple layers including at least one or more of a Co containing layer, Pt containing layer, Ta containing layer, an Ru containing layer, an optional structure decoupling layer disposed on the pinned magnetic layer, a magnetic reference layer disposed on the optional structure decoupling layer, a tunneling barrier layer disposed on the magnetic reference layer, a magnetic storage layer disposed on the tunneling barrier layer, and a capping layer disposed on the magnetic storage layer.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 28, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Jaesoo Ahn, Mahendra Pakala, Chi Hong Ching, Rongjun Wang
  • Patent number: 11081623
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 3, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 11075276
    Abstract: Methods and apparatus for forming a semiconductor structure such as an NMOS gate electrode are described. Methods may include depositing a first capping layer having a first surface atop a first surface of a high-k dielectric layer; and depositing at least one metal layer having a first surface atop the first surface of the first capping layer, wherein the at least one metal layer includes titanium aluminum silicide material. Some methods include removing an oxide layer from the first surface of the first capping layer by contacting the first capping layer with metal chloride in an amount sufficient to remove an oxide layer. Some methods for depositing a titanium aluminum silicide material are performed by an atomic layer deposition process performed at a temperature of 350 to 400 degrees Celsius.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yongjing Lin, Shih Chung Chen, Naomi Yoshida, Lin Dong, Liqi Wu, Rongjun Wang, Steven Hung, Karla Bernal Ramos, Yixiong Yang, Wei Tang, Sang-Ho Yu
  • Publication number: 20210220888
    Abstract: A system for flattening steel plates includes crane, a first conveyor, a second conveyor, a first shape detector, a second shape detector, a first rangefinder, a second rangefinder, a first detection device, a second detection device, a first idler roller, a second idler roller, a flattening machine, a first robot, a second robot, a third robot, and a fourth robot. The flattening machine is connected to one end of the first conveyor and one end of the second conveyor. The first shape detector is disposed above a middle part of the first conveyor. The second shape detector is disposed above a middle part of the second conveyor. The first rangefinder is disposed at one end of the first conveyor. The first detection device is disposed between the first rangefinder and the flattening machine. The second rangefinder is disposed on one end of the flattening machine.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 22, 2021
    Inventors: Lifeng MA, Rongjun WANG, Zhibin YAO, Lianyun JIANG, Lidong MA, Wenxu YUAN, Hailian GUI, Yuquan TONG
  • Publication number: 20210209552
    Abstract: A method including acquiring an electronic business card; determining corresponding scene information when the electronic business card is acquired; and associating the electronic business card with the corresponding scene information.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 8, 2021
    Inventors: Shangmingxue Kang, Rongjun Wang, Yutong Liu, Chengyu Zhang, Qianzi Xiong, Hang Ma, Jie Niu, Feng Luo
  • Publication number: 20210198075
    Abstract: A device for detecting the flatness of a sheet material includes a conveyor, a gantry, a beam, an industrial camera unit, a speed measurement unit, a vibration measurement unit, a multi-line laser, a cable carrier, an industrial controller, and a control cabinet. The conveyor is disposed beneath the gantry and includes a plurality of pinch roll assemblies for feeding a sheet material. The beam is disposed on the gantry and includes a first side and a second side. The industrial camera unit is disposed on the first side of the beam and includes at least two industrial cameras. The speed measurement unit is disposed between the at least two industrial cameras. The vibration measurement unit is disposed on the second side of the beam and includes at least two distance measurement devices. The multi-line laser is disposed between the at least two distance measurement devices.
    Type: Application
    Filed: December 31, 2020
    Publication date: July 1, 2021
    Inventors: Lifeng MA, Ziliang LI, Qingxue HUANG, Tao WANG, Dahai JING, Rongjun WANG, Lianyun JIANG
  • Publication number: 20210193914
    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ seed layers of one or more layer of chromium (Cr), NiCr, NiFeCr, RuCr, IrCr, or CoCr, or combinations thereof. These seed layers are used in combination with one or more pinning layers, a first pinning layer in contact with the seed layer can contain a single layer of cobalt, or can contain cobalt in combination with bilayers of cobalt and platinum (Pt), iridium (Ir), nickel (Ni), or palladium (Pd), The second pinning layer can be the same composition and configuration as the first, or can be of a different composition or configuration. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: Lin XUE, Chi Hong CHING, Rongjun WANG, Mahendra PAKALA
  • Patent number: 11043364
    Abstract: Embodiments of a process kit for use in a multi-cathode process chamber are disclosed herein. In some embodiments, a process kit includes a rotatable shield having a base, a conical portion extend downward and radially outward from the base, and a collar portion extending radially outward from a bottom of the conical portion; an inner deposition ring having a leg portion, a flat portion extending radially inward from the leg portion, a first recessed portion extending radially inward from the flat portion, and a first lip extending upward from an innermost section of the first recessed portion; and an outer deposition ring having a collar portion, an upper flat portion disposed above and extending radially inward from the collar portion, a second recessed portion extending inward from the upper flat portion, and a second lip extending upward from an innermost section of the second recessed portion.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 22, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hanbing Wu, Anantha K. Subramani, Ashish Goel, Deepak Jadhav, Rongjun Wang, Chi Hong Ching
  • Patent number: 11037768
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a process chamber for processing a substrate having a given diameter includes: an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a rotatable magnetron above the target to form an annular plasma in the peripheral portion; a substrate support disposed in the interior volume to support a substrate having the given diameter; a first set of magnets disposed about the body to form substantially vertical magnetic field lines in the peripheral portion; a second set of magnets disposed about the body and above the substrate support to form magnetic field lines directed toward a center of the support surface; a first power source to electrically bias the target; and a second power source to electrically bias the substrate support.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 15, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaodong Wang, Joung Joo Lee, Fuhong Zhang, Martin Lee Riker, Keith A. Miller, William Fruchterman, Rongjun Wang, Adolph Miller Allen, Shouyin Zhang, Xianmin Tang