Patents by Inventor Sandor Nagy

Sandor Nagy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422319
    Abstract: The present disclosure provides metallocene catalysts for use in polymerization processes. Such catalysts may be used to generate polymers with low branching and high molecular weights. Also, the present disclosure provides methods of bimodal polymerization resulting in a duality of average molecular weight polymers being simultaneously produced. In the system, the size of the polymers produced can be controlled by modifying the type and amount of catalyst activator.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: August 23, 2016
    Assignee: Basell Polyolefine GmbH
    Inventors: Michael W. Lynch, Sandor Nagy, Shahram Mihan, Ilya E. Nifant'ev, Pavel V. Ivchenko, Vladimir V. Bagrov, Igor A. Kashulin
  • Patent number: 9422380
    Abstract: The present disclosure relates to metallocene catalyst and the use thereof to make polyolefins. In particular, the present disclosure relates to silyl-functionalized metallocene catalyst and the use of the silyl-functionalized metallocene catalyst to polymerize olefins and yield a polyolefin. Also, the present disclosure relates to a method for producing a polyolefin comprising at least the step of contacting an olefin with a metallocene catalyst to produce a polyolefin. In particular, the present disclosure provides a method for producing a polyolefin comprising the step of contacting an olefin with a silyl-functionalized metallocene catalyst.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: August 23, 2016
    Assignee: Basell Polyolefine Wesseling
    Inventors: Sandor Nagy, Shahram Mihan, Ilya E. Nifant'ev, Pavel V. Ivchenko, Vladimir V. Bagrov, Igor A. Kashulin
  • Publication number: 20160237051
    Abstract: The present disclosure generally relates to a silica-titanium catalyst prepared by first reacting a solid support with a metal alkoxide and then depositing titanium onto the solid support for the epoxidation of alkenes and aralkenes and a method of preparing the catalyst thereof. In some embodiments, the present disclosure relates to methods of using the catalyst described herein for the production of epoxides.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 18, 2016
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Vu A. Dang, Roger A. Grey
  • Publication number: 20160183059
    Abstract: A method for tracking the movement and trajectory of objects associated with wireless devices, located in a predefined area, wherein transceiver nodes communicating with the monitored wireless communication devices are formed, the objects associated with wireless communication device entering or located in the range of the transceiver nodes are detected by said transceiver nodes and relevant collected data are processed by measuring the strength of the signal emitted by the object during communication by at least two access points, converting the measured signal strength data into a vector set, selecting and filtering out the objects that are communicating but make no movement by evaluating the vector set, and analysing the movement of the communicating objects changing their place by applying a pre-defined mathematical model. Access points operating according to a small-range “peer-to-peer” (P2P) type wireless communication standard are used as transceiver nodes.
    Type: Application
    Filed: November 30, 2014
    Publication date: June 23, 2016
    Applicant: SZEGEDI TUDOMÁNYEGYETEM
    Inventors: Sándor NAGY, Tibor GYIMÓTHY, Márk JELASITY, Vilmos BILICKI, Ádám VÉGH
  • Publication number: 20160016157
    Abstract: Method of preparing epoxidation catalysts are disclosed, including methods comprising reacting an inorganic siliceous solid with a metal complex of the formulas: wherein the variables are defined herein.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 21, 2016
    Inventors: Debra L. Jackson, Barbara Kimmich, Ilya E. Nifant'ev, Sandor Nagy, Daniel F. White, Pavel V. Ivchenko
  • Publication number: 20150375200
    Abstract: A method of preparing epoxidation catalysts is disclosed. The method comprises: (a) adding an inorganic siliceous solid to a column to produce a solid-filled column; (b) adding to the solid-filled column a solution comprising titanium tetrachloride and a hydrocarbon solvent to produce a titanium tetrachloride-impregnated solid; and (c) calcining the titanium tetrachloride-impregnated solid at a temperature from 500° C. to 1000° C. to produce the catalyst. The inorganic siliceous solid has a pore volume of at least 0.8 cm3/g.
    Type: Application
    Filed: January 22, 2015
    Publication date: December 31, 2015
    Inventors: Roger Grey, Debra Jackson, Daniel F. White, Sandor Nagy
  • Publication number: 20150329657
    Abstract: A catalyst system obtainable by contacting: A) a metal complex of formula (I) B) an iron complex of the general formula (II) C) an alumoxane or a compound capable of forming an alkyl cation with complexes of formula (I) and (II); Wherein the variables are described in the description
    Type: Application
    Filed: November 25, 2013
    Publication date: November 19, 2015
    Inventors: Lenka Richter-Lukesova, Shahram Mihan, Sandor Nagy
  • Publication number: 20150284489
    Abstract: The present disclosure relates to metallocene catalyst and the use thereof to make polyolefins. In particular, the present disclosure relates to silyl-functionalized metallocene catalyst and the use of the silyl-functionalized metallocene catalyst to polymerize olefins and yield a polyolefin. Also, the present disclosure relates to a method for producing a polyolefin comprising at least the step of contacting an olefin with a metallocene catalyst to produce a polyolefin. In particular, the present disclosure provides a method for producing a polyolefin comprising the step of contacting an olefin with a silyl-functionalized metallocene catalyst.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 8, 2015
    Inventors: Sandor Nagy, Shahram Mihan, Ilya E. Nifant'ev, Pavel V. Ivchenko, Vladimir V. Bagrov, Igor A. Kashulin
  • Publication number: 20150284490
    Abstract: The present disclosure relates to metallocene catalysts for use in polymerization processes. Such catalysis may be used to generate long chain polymers with low long chain branching and high molecular weights. Additionally, the size of the polymers produced can be controlled by modifying the ratio of MAO or other activator to metallocene catalyst.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 8, 2015
    Inventors: Sandor Nagy, Shahram Mihan, Linda N. Winslow, Ilya E. Nifant’ev, Pavel V. Ivchenko, Vladimir V. Bagrov, Igor A. Kashulin
  • Publication number: 20150284418
    Abstract: The present disclosure provides metallocene catalysts for use in polymerization processes. Such catalysts may be used to generate polymers with low branching and high molecular weights. Also, the present disclosure provides methods of bimodal polymerization resulting in a duality of average molecular weight polymers being simultaneously produced. In the system, the size of the polymers produced can be controlled by modifying the type and amount of catalyst activator.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 8, 2015
    Inventors: Michael W. Lynch, Sandor Nagy, Shahram Mihan, Ilya E. Nifant'ev, Pavel V. Ivchenko, Vladimir V. Bagrov, Igor A. Kashulin
  • Patent number: 8379056
    Abstract: A device for providing a video signal of a virtual image based on a real image of a camera, the real image having an object, includes a processing device. One piece of positional information each is associated with the camera and the object. The processing device generates the video signal of the virtual image based on the real image, the positional information of the camera and the positional information of the object. The virtual image includes an illustration of the object or object information with regard to the object.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 19, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V.
    Inventors: Hans Holm Fruehauf, Sandor Nagy
  • Publication number: 20130023632
    Abstract: A catalyst system obtainable with a process comprising the following steps: i) contacting a Zirconium compound of formula (I) ZrX4??(I) wherein X, equal to or different from each other, is a halogen atom, a R, OR, SR, NR2 or PR2 group wherein R is a linear or branched, cyclic or acyclic, C1-C40-alkyl, C2-C40 alkenyl, C2-C40 alkynyl, C6-C40-aryl, C7-C40-alkylaryl or C7-C40-arylalkyl radical; or two X groups can be joined together to form a divalent R? group wherein R? is a C1-C20-alkylidene, C6-C20-arylidene, C7-C20-alkylarylidene, or C7-C20-arylalkylidene divalent radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; with one or more boron compounds having Lewis acidity wherein the molar ratio between the boron compound and the compound of formula (I) ranges from 0.9 to 100; ii) adding the reaction mixture obtained in step i) to a support.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Inventors: Sandor NAGY, Karen L. Neal-Hawkins
  • Publication number: 20130023634
    Abstract: A catalyst system obtainable with a process comprising the following steps: i) contacting a group 4 metal compound of formula (I) MX4??(I) wherein M is a metal of group 4 of the periodic table of the element, and X is a halogen atom or an organic radical; with a compound of formula (II) ii) adding to the reaction mixture of step i) one or more boron compounds having Lewis acidity wherein the molar ratio between the boron compound and the compound of formula (I) ranges from 0.9 to 100; iii) adding the reaction mixture obtained in step ii) to a silica support. with the proviso that the catalyst system is not treated with alumoxanes.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Inventors: Sandor NAGY, Llya E. Nifantev, Karen L. Neal-Hawkins, Shahram Mihan
  • Patent number: 8158733
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 17, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko
  • Patent number: 8153544
    Abstract: A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 10, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Karen L. Neal-Hawkins
  • Publication number: 20120016092
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise a transition metal complex, an optional activator, and an optional support. The complex is the reaction product of a Group 3-6 transition metal source, an optional alkylating agent, and a ligand precursor comprising a 2-imino-8-anilinoquinoline or a 2-aminoalkyl-8-anilinoquinoline. The catalysts, which are easy to synthesize by in-situ metallation of the ligand precursor, offer polyolefin manufacturers good activity and the ability to make high-molecular-weight ethylene copolymers that have little or no long-chain branching.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Vladimir V. Bagrov
  • Patent number: 8084385
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 27, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Reynald Chevalier
  • Publication number: 20110306740
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a bridged cyclopentadienyl complex that incorporates a monoanionic hydroxylamido or hydrazido ligand fragment. Suitable complexes have the structure: wherein M is a Group 4 metal; Z is a divalent linking group; X is N or O; each of R1 and R2 is independently C1-C4 alkyl or C6-C10 aryl; R1 and R2 can be joined together; n is 0 when X is O, and n is 1 when X is N; each Y is independently halide, alkyl, dialkylamido, aryl, or aralkyl. A modeling approach is used to identify particular valuable complexes, each of which incorporates a readily synthesized cyclopentadienyl precursor.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Inventors: Sandor Nagy, Reynald Chevalier
  • Publication number: 20110294972
    Abstract: The invention relates to transition metal complexes comprising a metal of group 3, 4, or 6 of the Periodic Table of the Elements and one, or two mono-anionic triazole ligands It has been found that these transition metal complexes which comprise at least one triazole fragment having a substituent with an unsaturated fragment are suitable as precatalysts for the polymerization of olefins. In these complexes one carbon atom of the unsaturated fragment is bound directly or via a bridge to a triazole group and the other carbon atom is bound to the transition metal. The complexes are useful as catalysts for olefin polymerization, a catalyst system comprising these complexes and a process for the polymerization of olefins under the use of the catalyst system.
    Type: Application
    Filed: May 18, 2011
    Publication date: December 1, 2011
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Reynald Chevalier, Sandor Nagy
  • Publication number: 20110251362
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 transition metal complex which comprises at least one monoanionic R1N—XR2 ligand, where X is O or S, and each of R1 and R2 is independently alkyl, aryl, arylalkyl, alkylaryl, or trialkylsilyl. The complexes are readily made from R1NH—XR2 precursors and are often useful as catalyst components without further purification. The catalysts have good activities, incorporate comonomers well, and provide polymers with high molecular weight.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Inventors: Sandor Nagy, Reynald Chevalier