Patents by Inventor Sandor Nagy

Sandor Nagy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8017708
    Abstract: A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium compound, an aluminum compound, and a nitroso compound. Improved polyolefin properties, such as high molecular weight, are obtained.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: September 13, 2011
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Joachim T. M. Pater, Giampiero Morini
  • Publication number: 20110213107
    Abstract: A method for preparing a supported catalyst suitable for use in slurry and gas-phase olefin polymerizations is disclosed. An alumoxane-treated silica is combined with a monocyclopentadienyl Group 6 metal complex that comprises a chelating Cp moiety to give the supported catalyst. The method is simple to practice and provides catalysts having high activity. Polyolefins made using the catalysts have high molecular weight that is readily controlled by adding hydrogen.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Inventors: Sandor Nagy, Linda N. Winslow, Karen L. Neal-Hawkins, Shahram Mihan, Lenka Lukesova
  • Publication number: 20110082269
    Abstract: A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium compound, an aluminum compound, and a nitroso compound. Improved polyolefin properties, such as high molecular weight, are obtained.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventors: Sandor Nagy, Joachim T.M. Pater, Giampiero Morini
  • Publication number: 20110082270
    Abstract: A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium or vanadium compound, an aluminum compound, and a pyridazine. Improved properties such as increased molecular weight and narrowed molecular weight distribution are obtained.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventors: Sandor Nagy, Joachim T.M. Pater, Giampiero Morini
  • Publication number: 20110082268
    Abstract: A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium or vanadium compound, an aluminum compound, and an indazole. Improved comonomer incorporation and the ability to regulate molecular weight are achieved in the manufacture of polyolefins.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventors: Sandor Nagy, Joachim T.M. Pater, Giampiero Morini
  • Publication number: 20110021344
    Abstract: A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 27, 2011
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Karen L. Neal-Hawkins
  • Publication number: 20110021727
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 27, 2011
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko
  • Patent number: 7871952
    Abstract: A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium or vanadium compound, an aluminum compound, and a 2-hydroxypyridine N-oxide. Improved properties such as increased molecular weight are obtained.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 18, 2011
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Joachim T. M. Pater, Giampiero Morini
  • Patent number: 7858718
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 28, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Michael W. Lynch
  • Publication number: 20100220204
    Abstract: A device for providing a video signal of a virtual image based on a real image of a camera, the real image having an object, includes a processing device. One piece of positional information each is associated with the camera and the object. The processing device generates the video signal of the virtual image based on the real image, the positional information of the camera and the positional information of the object. The virtual image includes an illustration of the object or object information with regard to the object.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Hans Holm FRUEHAUF, Sandor NAGY
  • Patent number: 7781549
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and low long-chain branching. The process is capable of forming high-molecular-weight polyethylene and has good hydrogen sensitivity.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: August 24, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Patent number: 7776974
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in a first reactor in the presence of hydrogen and a catalyst comprising an activator and a supported dimethylsilyl-bridged indeno[1,2-b]indolyl zirconium complex to produce an ethylene homopolymer, removing some of the unreacted hydrogen, and reacting the homopolymer slurry in a second reactor with ethylene and a C3-C10 ?-olefin to produce polyethylene. The polyethylene has weight-average molecular weight greater than 150,000, broad molecular weight distribution, low long-chain branching, and it provides pipes or molded articles with good environmental stress crack resistance.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 17, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Linda N. Winslow, Sebastian Joseph, Sandor Nagy, Natalia Nagy, Barbara M. Tsuie, Charles H. Gates
  • Publication number: 20100129924
    Abstract: A method for evaluating the quality of an olefin polymerization catalyst is disclosed. A single-site organometallic complex is reacted with a methyl alumoxane under controlled reaction conditions. The extent and/or dynamics of methane formation from the reaction are measured, and the results are used to predict the suitability of the complex and/or the methyl alumoxane for use in an olefin polymerization.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Inventor: Sandor Nagy
  • Patent number: 7723451
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin, hydrogen, and a catalyst comprising an activator and a supported, dimethylsilyl-bridged bis(indenoindolyl)zirconium complex. The process has high catalyst activity and produces polyethylene having a broad molecular weight distribution.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 25, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Bradley P. Etherton, Jean A. Merrick-Mack, Everett O. Lewis, Mark P. Mack, Natalia Nagy, Edward S. Vargas
  • Patent number: 7671151
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: March 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Patent number: 7666961
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged bis-indeno[2,1-b]indolyl zirconium complex. The process uses a highly active catalyst and provides polyethylene characterized by a high level of long-chain branching.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 23, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Patent number: 7655740
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin and a catalyst comprising an activator and a supported bridged indeno[1,2-b]indolyl zirconium complex. The process produces polyethylene characterized by good incorporation of the ?-olefin and moderate long-chain branching. The process is capable of forming high molecular weight polyethylene and has good catalyst activity.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 2, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jean A. Merrick-Mack, Natalia Nagy
  • Patent number: 7638584
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of a catalyst system which comprises a bridged indenoindolyl transition metal complex on a support material, an alkylalumoxane, a titanium tetralkoxide, and a branched alkyl aluminum compound. The process provides polyethylenes with low density from ethylene alone.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: December 29, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Ronald J. Clemons
  • Publication number: 20090292087
    Abstract: A process for making polyethylene having an uncommon but valuable balance of broad molecular weight distribution and a low level of long-chain branching is disclosed. The process comprises polymerizing ethylene in a single reactor in the presence of an ?-olefin and a catalyst comprising an activator and a supported dialkylsilyl-bridged bis(indeno[1,2-b]indolyl)zirconium complex. The polyethylene, which has an Mw/Mn greater than 10 and a viscosity enhancement factor (VEF) of less than 2.5, is valuable for making blown films.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Stephen M. Imfeld
  • Publication number: 20090275711
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in a first reactor in the presence of hydrogen and a catalyst comprising an activator and a supported dimethylsilyl-bridged indeno[1,2-b]indolyl zirconium complex to produce an ethylene homopolymer, removing some of the unreacted hydrogen, and reacting the homopolymer slurry in a second reactor with ethylene and a C3-C10 ?-olefin to produce polyethylene. The polyethylene has weight-average molecular weight greater than 150,000, broad molecular weight distribution, low long-chain branching, and it provides pipes or molded articles with good environmental stress crack resistance.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Linda N. Winslow, Sebastian Joseph, Sandor Nagy, Natalia Nagy, Barbara M. Tsuie, Charles H. Gates