Patents by Inventor Sandor Nagy

Sandor Nagy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060041088
    Abstract: A high-temperature solution process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a preassembled bimetallic Ziegler-Natta catalyst and an aluminum compound. Molecular modeling calculations predict that the bimetallic Ziegler-Natta catalyst will have good activity and improved stability versus traditional Ziegler-Natta catalysts. This makes the catalyst especially suitable for solution polymerization processes, which require a thermally robust catalyst.
    Type: Application
    Filed: August 19, 2004
    Publication date: February 23, 2006
    Inventors: Sandor Nagy, Mark Mack
  • Patent number: 6998451
    Abstract: A process for making polyolefins is disclosed. The process comprises polymerizing an olefin in the presence of an activator, an organometallic complex, and an aluminum phosphate support. The complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. The use of the aluminum phosphate support in combination with the indenoindolyl complex provides an unexpected boost in catalyst activity when compared with other common supports. When a combination of olefins is used, good comonomer incorporation is obtained.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: February 14, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Karen Neal-Hawkins
  • Patent number: 6995216
    Abstract: A dual olefin polymerization process is disclosed. The process uses a bridged indenoindolyl ligand-containing Group 4 transition metal complex and an activator. It is carried out in multiple stages or in multiple reactors. The same complex and the same activator are used in all stages or reactors. Different polyolefins are made in different stages or reactors by varying the monomer compositions, hydrogen concentrations, or both. The process of the invention produces polyolefins which have broad molecular weight distributions, composition distributions, or both.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 7, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Linda N. Winslow, Sandor Nagy
  • Patent number: 6984599
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and a hydroxyl-depleted calixarene ligand that is chelated to the metal. Molecular modeling studies reveal that organometallic complexes incorporating such calixarene ligands, when combined with an activator such as MAO, should actively polymerize olefins.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 10, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 6982305
    Abstract: A process for polymerizing olefins is disclosed. The process polymerizes an olefin in the presence of a dehydrogenation catalyst and an olefin polymerization catalyst. The dehydrogenation catalyst enables in-situ generation of alkenes from oligomers or solvent. The alkenes are then incorporated into the polyolefin. The polyolefin should have increased long-chain branching and lower density without the use of expensive comonomers.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: January 3, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Publication number: 20050280264
    Abstract: A wind-powered generator can be used with high efficiency, not only in large wind-powered systems but also in smaller versions. Two or more generators are arranged, either one behind the other or side by side, after a mechanical device which uses wind power. The two or more generators which are connected to one another by widely differing types of coupling systems.
    Type: Application
    Filed: May 16, 2003
    Publication date: December 22, 2005
    Inventor: Sandor Nagy
  • Patent number: 6958377
    Abstract: A process for polymerizing olefins is disclosed. The process uses an organometallic complex with at least one non-bridged indenoindolyl ligand bonded to M. The substituent on the indole nitrogen contains an atom selected from the group consisting of S, O, P, and N. Polyolefins from the process have unexpectedly high molecular weight compared with polyolefins made using similar supported indenoindolyl complexes.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 25, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Publication number: 20050228156
    Abstract: A very low density polyethylene (VLDPE) film is disclosed. The film has a high average heat seal strength and physical strength. The VLDPE has a density within the range of about 0.880 to 0.914 g/cm3. The film has a seal initiation temperature lower than or equal to 95° C. and an average heat seal strength greater than or equal to 1.75 lb/in. The film has a machine-direction (MD) modulus greater than or equal to 12,000 psi. The film can be used as a monolayer film or as a layer of a multilayer film. It is suitable for heat sealable bags and many other applications.
    Type: Application
    Filed: April 7, 2004
    Publication date: October 13, 2005
    Inventors: Charles Holland, Harilaos Mavridis, Joel Mutchler, Sandor Nagy
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Publication number: 20050182211
    Abstract: Catalyst systems and methods for olefin polymerization are disclosed. The polymerizations are performed in the presence of a clathrochelate which comprises a transition metla ion and an encapsulating macropolycyclic ligand. At least one of the capping atoms of the macropolycyclic ligand is a Group 3-10 transition metla or a Group 13 atom. When a capping atom is a Group 3-10 transition metal, the clathrochelate can be used with an activator to polymerize olefins. When a capping atom is a Group 13 atom, the clathrachelate can be used as an activator for an olefin polumerization. Clathrochelates allow polyolefin markers to fine tune catalyst reactivity and polyolefin properties.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 18, 2005
    Inventors: Sandor Nagy, Barbara Tsuie
  • Publication number: 20050165180
    Abstract: A process for polymerizing olefins is disclosed. The process polymerizes an olefin in the presence of a dehydrogenation catalyst and an olefin polymerization catalyst. The dehydrogenation catalyst enables in-situ generation of alkenes from oligomers or solvent. The alkenes are then incorporated into the polyolefin. The polyolefin should have increased long-chain branching and lower density without the use of expensive comonomers.
    Type: Application
    Filed: January 26, 2004
    Publication date: July 28, 2005
    Inventor: Sandor Nagy
  • Patent number: 6908972
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson
  • Publication number: 20050085376
    Abstract: The present invention provides a method of preparing a supported catalyst from a liquid catalyst system dispersed on a solid carrier. The method of this embodiment comprises freezing the liquid catalyst system in a non-reactive liquid to form a frozen catalyst system dispersed within the non-reactive liquid. The frozen catalyst system is then contacted with a solid carrier. Finally, the non-reactive liquid is removed to yield the supported catalyst. In another embodiment, a supported catalyst made by the methods of the present invention is provided.
    Type: Application
    Filed: October 20, 2003
    Publication date: April 21, 2005
    Applicant: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Kenneth Johnson
  • Publication number: 20050085602
    Abstract: A process for polymerizing olefins is disclosed. The process uses an organometallic complex with at least one non-bridged indenoindolyl ligand bonded to M. The substituent on the indole nitrogen contains an atom selected from the group consisting of S, O, P, and N. Polyolefins from the process have unexpectedly high molecular weight compared with polyolefins made using similar supported indenoindolyl complexes.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 21, 2005
    Inventors: Sandor Nagy, Barbara Tsuie
  • Patent number: 6875829
    Abstract: A single-site olefin polymerization catalyst and method of making it are disclosed. The catalyst comprises an activator and an organometallic complex. The complex comprises a Group 3 to 10 transition or lanthanide metal, M, and at least one chelating N-oxide ligand that is bonded to M. Molecular modeling results indicate that single-site catalysts based on certain chelating N-oxide ligands (e.g., 2-hydroxypyridine) will rival the performance of catalysts based on cyclopentadienyl and substituted cyclopentadienyl ligands.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Publication number: 20050070728
    Abstract: A new class of zwitterionic metallocycles is disclosed. A positively charged Group 4-10 transition metal is chelated to two heteroatoms and one of the heteroatoms has a substituent bearing a negative charge. We have found that substitution in this position stabilizes the zwitterion form of the metallocycle. The zwitterionic metallocycle is useful for olefin polymerizations.
    Type: Application
    Filed: September 29, 2003
    Publication date: March 31, 2005
    Inventors: Sandor Nagy, Mark Mack
  • Patent number: 6860720
    Abstract: A wind power system includes a rotary drive, used in conjunction with a mechanical and self-energizing coupling system. The rotary drive can be used as a wind power system in all areas. The electromagnetic coupling system can be used in all industrial areas, in all areas and types of vehicle technology, and in all electrical engineering areas. The combination of a wind power system with a rotary drive with mechanical and self-energizing coupling system indicates that the wind force can be utilized more effectively than in the case of conventional wind-driven rotors, irrespective of the physical size. This is achieved by virtue of the blade arrangement and the special design of the housing. The self-energizing coupling system furthermore has the physical advantage that the magnet is combined in one space with the iron core and, on the other hand, a short-circuited coil is energized. The current for the electromagnetic coupling may also be taken directly from the generator stage.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: March 1, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventor: Sandor Nagy
  • Patent number: 6841500
    Abstract: Catalyst systems useful for olefin polymerization are disclosed. The catalysts include a bimetallic complex that incorporates two linked indenoindolyl groups, each of which is pi-bonded through its cyclopentadienyl ring to one of the metals. Compared with conventional indenoindolyl complexes, the bimetallic complexes of the invention have enhanced ability to give polyolefins with desirably low melt indices. Certain bimetallic indenoindolyl complexes also provide a way to broaden polymer molecular weight distribution and thereby improve processability simply by regulating the amounts of comonomer and activator used in the polymerization.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, William J. Sartain
  • Publication number: 20050004330
    Abstract: A process for making polyolefins is disclosed. The process comprises polymerizing an olefin in the presence of an activator, an organometallic complex, and an aluminum phosphate support. The complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. The use of the aluminum phosphate support in combination with the indenoindolyl complex provides an unexpected boost in catalyst activity when compared with other common supports. When a combination of olefins is used, good comonomer incorporation is obtained.
    Type: Application
    Filed: July 1, 2003
    Publication date: January 6, 2005
    Inventors: Sandor Nagy, Karen Neal-Hawkins
  • Patent number: 6838410
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an ?-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described. Additionally, supported and unsupported indeno[1,2-b]indolyl catalysts provide exceptional activities in the preparation of elastomeric polypropylene and ethylene copolymers.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 4, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie, Craig C. Meverden