Patents by Inventor Shang-Chieh Chien

Shang-Chieh Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11630393
    Abstract: An apparatus for generating extreme ultraviolet (EUV) radiation includes a droplet generator configured to generate target droplets. An excitation laser is configured to heat the target droplets using excitation pulses to convert the target droplets to plasma. An energy detector is configured to measure a variation in EUV energy generated when the target droplets are converted to plasma. A feedback controller is configured to adjust parameters of the droplet generator and/or the excitation laser based on the variation in EUV energy.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chieh Hsieh, Kuan-Hung Chen, Chun-Chia Hsu, Shang-Chieh Chien, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 11605477
    Abstract: An extreme ultra violet (EUV) light source apparatus includes a metal droplet generator, a collector mirror, an excitation laser inlet port for receiving an excitation laser, a first mirror configured to reflect the excitation laser that passes through a zone of excitation, and a second mirror configured to reflect the excitation laser reflected by the first mirror.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng Hung Tsai, Sheng-Kang Yu, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen
  • Patent number: 11602037
    Abstract: A target droplet source for an extreme ultraviolet (EUV) source includes a droplet generator configured to generate target droplets of a given material. The droplet generator includes a nozzle configured to supply the target droplets in a space enclosed by a chamber. In some embodiments, a nozzle tube is arranged within the nozzle of the droplet generator, and the nozzle tube includes a structured nozzle pattern configured to provide an angular momentum to the target droplets.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Huan Chen, Yu-Chih Huang, Ming-Hsun Tsai, Shang-Chieh Chien, Heng-Hsin Liu
  • Publication number: 20230060899
    Abstract: A lithography system is provided capable of deterring contaminants, such as tin debris from entering into the scanner. The lithography system in accordance with various embodiments of the present disclosure includes a processor, an extreme ultraviolet light source, a scanner, and a hollow connection member. The light source includes a droplet generator for generating a droplet, a collector for reflecting extreme ultraviolet light into an intermediate focus point, and a light generator for generating pre-pulse light and main pulse light. The droplet generates the extreme ultraviolet light in response to the droplet being illuminated with the pre-pulse light and the main pulse light. The scanner includes a wafer stage. The hollow connection member includes an inlet that is in fluid communication with an exhaust pump. The hollow connection member provides a hollow space in which the intermediate focus point is disposed.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Chieh HSIEH, Tai-Yu CHEN, Cho-Ying LIN, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230064840
    Abstract: A shutter is provided near the immediate focus of a lithography apparatus in order to deflect tin debris generated by a source side of the apparatus away from a scanner side of the apparatus and towards a debris collection device. The activation of the shutter is synchronized with the generation of light pulses so as not to block light from entering the scanner side.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Chieh HSIEH, Tai-Yu CHEN, Hung-Jung HSU, Cho-Ying LIN, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230067967
    Abstract: In a method of inspecting an extreme ultraviolet (EUV) radiation source, during an idle mode, a borescope mounted on a fixture is inserted through a first opening into a chamber of the EUV radiation source. The borescope includes a connection cable attached at a first end to a camera. The fixture includes an extendible section mounted from a first side on a lead screw, and the camera of the borescope is mounted on a second side, opposite to the first side, of the extendible section. The extendible section is extended to move the camera inside the chamber of the EUV radiation source. One or more images are acquired by the camera from inside the chamber of the EUV radiation source at one or more viewing positions. The one or more acquired images are analyzed to determine an amount of tin debris deposited inside the chamber of the EUV radiation source.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Chiao-Hua CHENG, Sheng-Kang YU, Shang-Chieh CHIEN, Wei-Chun YEN, Heng-Hsin LIU, Ming-Hsun TSAI, Yu-Fa LO, Li-Jui CHEN, Wei-Shin CHENG, Cheng-Hsuan WU, Cheng-Hao LAI, Yu-Kuang SUN, Yu-Huan CHEN
  • Publication number: 20230065403
    Abstract: A light source is provided capable of maintaining the temperature of a collector surface at or below a predetermined temperature. The light source in accordance with various embodiments of the present disclosure includes a processor, a droplet generator for generating a droplet to create extreme ultraviolet light, a collector for reflecting the extreme ultraviolet light into an intermediate focus point, a light generator for generating pre-pulse light and main pulse light, and a thermal image capture device for capturing a thermal image from a reflective surface of the collector.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Tai-Yu CHEN, Cho-Ying LIN, Sagar Deepak KHIVSARA, Hsiang CHEN, Chieh HSIEH, Sheng-Kang YU, Shang-Chieh CHIEN, Kai Tak LAM, Li-Jui CHEN, Heng-Hsin LIU, Zhiqiang WU
  • Publication number: 20230061242
    Abstract: In a method of generating extreme ultraviolet (EUV) radiation in a semiconductor manufacturing system one or more streams of a gas is directed, through one or more gas outlets mounted over a rim of a collector mirror of an EUV radiation source, to generate a flow of the gas over a surface of the collector mirror. The one or more flow rates of the one or more streams of the gas are adjusted to reduce an amount of metal debris deposited on the surface of the collector mirror.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Che-Chang HSU, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230060625
    Abstract: A target droplet source for an extreme ultraviolet (EUV) source includes a droplet generator configured to generate target droplets of a given material. The droplet generator includes a nozzle configured to supply the target droplets in a space enclosed by a chamber. In some embodiments, a nozzle tube is arranged within the nozzle of the droplet generator, and the nozzle tube includes a structured nozzle pattern configured to provide an angular momentum to the target droplets.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Yu-Huan CHEN, Yu-Chih HUANG, Ming-Hsun TSAI, Shang-Chieh CHIEN, Heng-Hsin LIU
  • Publication number: 20230062653
    Abstract: Supersonic gas jets are provided near the immediate focus of a lithography apparatus in order to deflect tin debris generated by the lithography process away from a scanner side and towards a debris collection device. The gas jets can be positioned in a variety of useful orientations, with adjustable gas flow velocity and gas density in order to prevent up to nearly 100% of the tin debris from migrating to the reticle on the scanner side.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Chih-Ping YEN, Yen-Shuo SU, Chieh HSIEH, Shang-Chieh CHIEN, Chun-Lin CHANG, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230062302
    Abstract: An extreme ultra violet (EUV) light source apparatus includes a metal droplet generator, a collector mirror, an excitation laser inlet port for receiving an excitation laser, a first mirror configured to reflect the excitation laser that passes through a zone of excitation, and a second mirror configured to reflect the excitation laser reflected by the first mirror.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Cheng Hung TSAI, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20230058753
    Abstract: Some implementations described herein provide techniques and apparatuses for an extreme ultraviolet (EUV) radiation source that includes a backsplash-prevention system to reduce, minimize, and/or prevent the formation of tin (Sn) build-up in a tunnel structure of a collector flow ring that might otherwise be caused by the accumulation of Sn satellites. This reduces backsplash of Sn onto a collector of the EUV radiation source, increases the operational life of the collector (e.g., by increasing the time duration between cleaning and/or replacement of the collector), reduces downtime of the EUV radiation source, and/or enables the performance of the EUV radiation source to be sustained for longer time durations (e.g., by reducing, minimizing, and/or preventing the rate of Sn contamination of the collector), among other examples.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 23, 2023
    Inventors: Cheng-Hao LAI, Ming-Hsun TSAI, Hsin-Feng CHEN, Wei-Shin CHENG, Yu-Kuang SUN, Cheng-Hsuan WU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230049820
    Abstract: Some implementations described herein provide a dual-feedback control system for laser beam targeting in a lithography system such as an EUV lithography system. In addition to using feedback from a high-frequency quad-cell sensor to adjust a target position of the pre-pulse laser beam based on a first portion of a phase of a wavefront of the pre-pulse laser beam, the dual-feedback control system uses feedback from a low-frequency camera sensor to adjust the target position of the pre-pulse laser beam based on a second portion of the phase of the wavefront.
    Type: Application
    Filed: April 15, 2022
    Publication date: February 16, 2023
    Inventors: Kuan-Hung CHEN, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20230038668
    Abstract: Example implementations described herein include a laser source and associated methods of operation that can balance or reduce uneven beam profile problem and even improve plasma heating efficiency to enhance conversion efficiency and intensity for extreme ultraviolet radiation generation. The laser source described herein generates an auxiliary laser beam to augment a pre-pulse laser beam and/or a main-pulse laser beam, such that uneven beam profiles may be corrected and/or compensated. This may improve an intensity of the laser source and also improve an energy distribution from the laser source to a droplet of a target material, effective to increase an overall operating efficiency of the laser source.
    Type: Application
    Filed: March 21, 2022
    Publication date: February 9, 2023
    Inventors: Tai-Yu CHEN, Shang-Chieh CHIEN, Sheng-Kang YU, Li-Jui CHEN, Heng-Hsin LIU
  • Patent number: 11576250
    Abstract: Some implementations described herein provide techniques and apparatuses for an extreme ultraviolet (EUV) radiation source that includes a backsplash-prevention system to reduce, minimize, and/or prevent the formation of tin (Sn) build-up in a tunnel structure of a collector flow ring that might otherwise be caused by the accumulation of Sn satellites. This reduces backsplash of Sn onto a collector of the EUV radiation source, increases the operational life of the collector (e.g., by increasing the time duration between cleaning and/or replacement of the collector), reduces downtime of the EUV radiation source, and/or enables the performance of the EUV radiation source to be sustained for longer time durations (e.g., by reducing, minimizing, and/or preventing the rate of Sn contamination of the collector), among other examples.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hao Lai, Ming-Hsun Tsai, Hsin-Feng Chen, Wei-Shin Cheng, Yu-Kuang Sun, Cheng-Hsuan Wu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20230030134
    Abstract: A method of controlling a droplet illumination module/droplet detection module system of an extreme ultraviolet (EUV) radiation source includes irradiating a target droplet with light from a droplet illumination module and detecting light reflected and/or scattered by the target droplet. The method includes determining whether an intensity of the detected light is within an acceptable range. In response to determining that the intensity of the detected light is not within the acceptable range, a parameter of the droplet illumination module is automatically adjusted to set the intensity of the detected light within the acceptable range.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Jen-Yang CHUNG, Chieh HSIEH, Shang-Chieh CHIEN, Li-Jui CHEN, Po-Chung CHENG
  • Patent number: 11567415
    Abstract: A method for inspecting an extreme ultraviolet (EUV) light source includes: removing a collector mirror of the EUV light source from a collector chamber; installing an inspection apparatus within the collector chamber, the apparatus including a selectively extendable and retractable member and a camera at one end of the member; operating a first actuator to extend the member along a path through the interior chamber of the EUV light source, thereby moving the camera to a given position within the interior chamber of the EUV light source; operating a second actuator to pan the camera about an axis of rotation, thereby establishing a given camera orientation within the interior of the EUV light source; and, capturing an image of the interior chamber of the EUV light source with the camera while the camera is at the given position and orientation established by the operation of the first and second actuators.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chiao-Hua Cheng, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu
  • Patent number: 11556065
    Abstract: A method includes moving a wafer stage to a first station on a table body of a lithography chamber; placing a wafer on a top surface of the wafer stage; emitting a first laser beam from a first laser emitter toward a first beam splitter on a first sidewall of the wafer stage, wherein a first portion of the first laser beam is reflected by the first beam splitter to form a first reflected laser beam, and a second portion of the first laser beam transmits through the first beam splitter to form a first transmitted laser beam; calculating a position of the wafer stage on a first axis based on the first reflected laser beam; after calculating the position of the wafer, moving the wafer stage to a second station on the table body; and performing a lithography process to the wafer.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Huan Chen, Yu-Chih Huang, Ya-An Peng, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20230010810
    Abstract: A system and a method for supplying target material in an EUV light source are provided. The system for supplying a target material comprises a priming assembly, a refill assembly and a droplet generator assembly. The priming is configured to transform the target material from a solid state to a liquid state. The refill assembly is in fluid communication with the priming assembly and configured to receive the target material in the liquid state from the priming assembly. Further, the refill assembly includes a purifier configured to purify the target material in the liquid state. The droplet generator assembly is configured to supply the target material in the liquid state from the refill assembly.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Inventors: HSIN-FENG CHEN, MING-HSUN TSAI, LI-JUI CHEN, SHANG-CHIEH CHIEN, HENG-HSIN LIU, CHENG-HAO LAI, YU-HUAN CHEN, WEI-SHIN CHENG, YU-KUANG SUN, CHENG-HSUAN WU, YU-FA LO, CHIAO-HUA CHENG
  • Patent number: 11553581
    Abstract: A method for using an extreme ultraviolet radiation source is provided. The method includes assembling a first droplet generator onto a port of a vessel; ejecting a target droplet from the first droplet generator to a zone of excitation in front of a collector; emitting a laser toward the zone of excitation, such that the target droplet is heated by the laser to generate extreme ultraviolet (EUV) radiation; stopping the ejection of the target droplet; after stopping the ejection of the target droplet, disassembling the first droplet generator from the port of the vessel; after disassembling the first droplet generator from the port of the vessel, inserting a cleaning device into the vessel through the port; and cleaning the collector by using the cleaning device.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: January 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiao-Hua Cheng, Hsin-Feng Chen, Yu-Fa Lo, Yu-Kuang Sun, Wei-Shin Cheng, Yu-Huan Chen, Ming-Hsun Tsai, Cheng-Hao Lai, Cheng-Hsuan Wu, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu