Patents by Inventor Sheng Chen

Sheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950428
    Abstract: A memory device includes a first stacking structure, a second stacking structure, a plurality of first isolation structures, gate dielectric layers, channel layers and conductive pillars. The first stacking structure includes a plurality of first gate layers, and a second stacking structure includes a plurality of second gate layers, where the first stacking structure and the second stacking structure are located on a substrate and separated from each other through a trench. The first isolation structures are located in the trench, where a plurality of cell regions are respectively confined between two adjacent first isolation structures of the first isolation structures in the trench, where the first isolation structures each includes a first main layer and a first liner surrounding the first main layer, where the first liner separates the first main layer from the first stacking structure and the second stacking structure.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Patent number: 11948941
    Abstract: A semiconductor device includes a gate layer, a channel material layer, a first dielectric layer and source/drain terminals. The gate layer is disposed over a substrate. The channel material layer is disposed over the gate layer, where a material of the channel material layer includes a first low dimensional material. The first dielectric layer is between the gate layer and the channel material layer. The source/drain terminals are in contact with the channel material layer, where the channel material layer is at least partially disposed between the source/drain terminals and over the gate layer, and the gate layer is disposed between the substrate and the source/drain terminals.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Tse Hung, Ang-Sheng Chou, Hung-Li Chiang, Tzu-Chiang Chen, Chao-Ching Cheng
  • Publication number: 20240105786
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first source/drain (S/D) region disposed over a substrate, a second S/D region disposed over the substrate, a dielectric wall disposed between the first and second S/D regions, a first conductive contact disposed over and electrically connected to the first S/D region, a second conductive contact disposed over and electrically connected to the second S/D region, and a first dielectric material in contact with the dielectric wall. The first dielectric material has a top surface located at a first level between a top surface of the first conductive contact and a bottom surface of the first conductive contact, and the first dielectric material extends from the first level to a second level located below the bottom surface of the first conductive contact.
    Type: Application
    Filed: January 15, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN
  • Publication number: 20240102194
    Abstract: A plating system and a method thereof are disclosed. The plating system performs a N-stage plating drilling filling process in which a M-th stage plating drilling filling process with a M-th current density is performed on a hole of a substrate for a M-th plating time to form a M-th plating layer on the to-be-plated layer, wherein N is a positive integer equal to or greater than 3, and M is a positive integer positive integer in a range of 1 to N. Therefore, the technical effect of providing a higher drilling filling rate than conventional plating filling technology under a condition that a total thickness of plating layers is fixed can be achieved.
    Type: Application
    Filed: August 7, 2023
    Publication date: March 28, 2024
    Inventors: Cheng-EN HO, Yu-Lian CHEN, Cheng-Chi WANG, Yu-Jen CHANG, Yung-Sheng LU, Cheng-Yu LEE, Yu-Ming LIN
  • Publication number: 20240105805
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes channel structures vertically stacked over a substrate and a source/drain structure laterally attached to the channel structures in the first direction. The semiconductor structure also includes a dielectric wall structure laterally attached to the channel structures in the second direction. The second direction is different from the first direction. In addition, the dielectric wall structure includes a bottom portion and a cap layer formed over the bottom portion. The semiconductor structure also includes an isolation feature vertically overlapping the cap layer of the dielectric wall structure and a gate structure formed around the channel structures and covering a sidewall of the isolation feature.
    Type: Application
    Filed: February 2, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN, Ta-Chun LIN, Shih-Hsun CHANG, Chih-Hao CHANG
  • Publication number: 20240106246
    Abstract: Disclosed is a power storage device and method for discharging the same, which configures the power storage device to perform an electric power output under a discharging limit upon coupling with a load device and before any authentication is conducted. The discharging limit for the electric power output will be lifted only when an authentication result between the power storage device and the load device indicates a successful authentication.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 28, 2024
    Inventors: Wei-Tsung Huang, I-Sheng Chen, Liang-Yi Hsu
  • Publication number: 20240105778
    Abstract: A semiconductor device includes a fin extending from a substrate. The fin has a source/drain region and a channel region. The channel region includes a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer and vertically separated from the first semiconductor layer by a spacing area. A high-k dielectric layer at least partially wraps around the first semiconductor layer and the second semiconductor layer. A metal layer is formed along opposing sidewalls of the high-k dielectric layer. The metal layer includes a first material. The spacing area is free of the first material.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: I-Sheng CHEN, Yee-Chia YEO, Chih Chieh YEH, Cheng-Hsien WU
  • Publication number: 20240106757
    Abstract: A method of wireless signal transmission management includes transmitting a plurality of data packets to tethering equipment from user equipment to tethering equipment, determining a size of each of the plurality of data packets by the tethering equipment, designating data packets of the plurality of data packets having a specific range of sizes as control signal packets by the tethering equipment, and prioritizing in transmitting the control signal packets to a cellular network by the tethering equipment.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Applicant: MEDIATEK INC.
    Inventors: Ching-Hao Lee, Yi-Lun Chen, Ho-Wen Pu, Yu-Yu Hung, Jun-Yi Li, Ting-Sheng Lo
  • Patent number: 11942730
    Abstract: Active cables and communication methods can provide data path redundancy with power sharing. In one illustrative cable implementation, the cable includes a first connector with contacts to supply power to circuitry in the first connector; a second connector with contacts to supply power to a component of the circuitry in the first connector via a first connection that prevents reverse current flow; and a third connector with contacts to supply power to the same component via a second connection that prevents reverse current flow. An illustrative method implementation includes: using contacts of a first connector to supply power to circuitry in the first connector; and using contacts in each of multiple redundant connectors to supply power to a component of said circuitry in the first connector via a corresponding diodic or switched connection that prevents reverse current flow.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: March 26, 2024
    Assignee: Credo Technology Group Limited
    Inventors: Baohua Chen, Haoli Qian, Sheng Huang, Donald Barnetson
  • Patent number: 11943525
    Abstract: An electronic camera assembly includes a camera chip cube bonded to camera bondpads of an interposer; at least one light-emitting diode (LED) bonded to LED bondpads of the interposer at the same height as the camera bondpads; and a housing extending from the interposer and LEDs to the height of the camera chip cube, with light guides extending from the LEDs through the housing to a top of the housing. In embodiments, the electronic camera assembly includes a cable coupled to the interposer. In typical embodiments the camera chip cube has footprint dimensions of less than three and a half millimeters square.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: March 26, 2024
    Assignee: OmniVision Technologies, Inc.
    Inventors: Teng-Sheng Chen, Wei-Ping Chen, Jau-Jan Deng, Wei-Feng Lin
  • Patent number: 11942146
    Abstract: Various embodiments provide methods for configuring a phase-change random-access memory (PCRAM) structures, such as PCRAM operating in a single-level-cell (SLC) mode or a multi-level-cell (MLC) mode. Various embodiments may support a PCRAM structure being operating in a SLC mode for lower power and a MLC mode for lower variability. Various embodiments may support a PCRAM structure being operating in a SLC mode or a MLC mode based at least in part on an error tolerance for a neural network layer.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Win-San Khwa, Kerem Akarvardar, Yu-Sheng Chen
  • Patent number: 11940737
    Abstract: A method includes receiving a device design layout and a scribe line design layout surrounding the device design layout. The device design layout and the scribe line design layout are rotated in different directions. An optical proximity correction (OPC) process is performed on the rotated device design layout and the rotated scribe line design layout. A reticle includes the device design layout and the scribe line design layout is formed after performing the OPC process.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Patent number: 11942467
    Abstract: A semiconductor structure includes a first metal-dielectric-metal layer, a first dielectric layer, a first conductive layer, a second conductive layer, and a second dielectric layer. The first metal-dielectric-metal layer includes a plurality of first fingers, a plurality of second fingers, and a first dielectric material. The first fingers are electrically connected to a first voltage. The second fingers are electrically connected to a second voltage different from the first voltage, and the first fingers and the second fingers are arranged in parallel and staggeredly. The first dielectric material is between the first fingers and the second fingers. The first dielectric layer is over the first metal-dielectric-metal layer. The first conductive layer is over the first dielectric layer. The second conductive layer is over the first conductive layer. The second dielectric layer is between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Sheng Chen, Yi-Jing Li, Chia-Ming Hsu, Wan-Lin Tsai, Clement Hsingjen Wann
  • Patent number: 11942563
    Abstract: A manufacturing method of a chip package includes patterning a wafer to form a scribe trench, in which a light-transmissive function layer below the wafer is in the scribe trench, the light-transmissive function layer is between the wafer and a carrier, and a first included angle is formed between an outer wall surface and a surface of the wafer facing the light-transmissive function layer; cutting the light-transmissive function layer and the carrier along the scribe trench to form a chip package that includes a chip, the light-transmissive function layer, and the carrier; and patterning the chip to form an opening, in which the light-transmissive function layer is in the opening, a second included angle is formed between an inner wall surface of the chip and a surface of the chip facing the light-transmissive function layer, and is different from the first included angle.
    Type: Grant
    Filed: June 1, 2023
    Date of Patent: March 26, 2024
    Assignee: XINTEC INC.
    Inventors: Chia-Sheng Lin, Hui-Hsien Wu, Jian-Hong Chen, Tsang-Yu Liu, Kuei-Wei Chen
  • Publication number: 20240097010
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240092415
    Abstract: An HOD device, comprising: a framework; covering material, covering the frame work; at least one conductive region, provided on or in the covering material; wherein the conductive region is coupled to a capacitance detection circuit or a predetermined voltage level. The HOD device can be a vehicle control device such as a steering wheel. The conductive region comprises conductive wires which can be threads of the covering material. By this way, the arrangements of the conductive wires can be changed corresponding to the size or the shape of the frame work or any other requirements. Also, the interference caused by unstable factors can be improved since the conductive wires can be coupled to a ground source of the vehicle to provide a short capacitance sensing path.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 21, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Chin-Hua Hu, Ching-Shun Chen, Yu-Han Chen, Yu-Sheng Lin
  • Publication number: 20240096789
    Abstract: An antifuse structure and IC devices incorporating such antifuse structures in which the antifuse structure includes an dielectric antifuse structure formed on an active area having a first dielectric antifuse electrode, a second dielectric antifuse electrode extending parallel to the first dielectric antifuse electrode, a first dielectric composition between the first dielectric antifuse electrode and the second dielectric antifuse electrode, and a first programming transistor electrically connected to a first voltage supply wherein, during a programming operation a programming voltage is selectively applied to certain of the dielectric antifuse structures to form a resistive direct electrical connection between the first dielectric antifuse electrode and the second dielectric antifuse electrode.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Meng-Sheng CHANG, Chien-Ying CHEN, Yao-Jen YANG
  • Publication number: 20240094497
    Abstract: An imaging lens module includes a casing, an imaging lens disposed to the casing, a lens carrier supporting the image lens, an elastic element connected to the lens carrier to provide the lens carrier with a translational degree of freedom along an optical axis, a frame connected to the elastic element such that the lens carrier is movable along the optical axis with respect to the frame, a variable through hole module coupled to the imaging lens and having a light passable hole with a variable aperture size, and a wiring assembly including a fixed wiring part at least partially located closer to the opening than the elastic element and a movable wiring part electrically connected to the fixed wiring part and the variable through hole module. The optical axis passes through lens elements of the imaging lens and the center of the variable through hole module.
    Type: Application
    Filed: January 10, 2023
    Publication date: March 21, 2024
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Hao-Jan CHEN, Heng Yi SU, Ming-Ta CHOU, Te-Sheng TSENG
  • Publication number: 20240091569
    Abstract: Methods, apparatuses, systems, and/or the like are provided. An example method may include installing one or more filter cartridges in a blower device. An example blower device may include a housing defining at least one air inlet. An example filter cartridge may include a first filter cartridge defining a first outlet opening. The first filter cartridge may be configured to slidably engage the blower device to align the first outlet opening with at least a first portion of the at least one air inlet of the blower device in a first installed position. The one or more filter cartridges my include a second filter cartridge. The second filter cartridge may include a second outlet opening. The example method may include aligning the first outlet opening of the first filter cartridge with at least the first portion of the at least one air inlet of the blower device.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 21, 2024
    Inventors: Siwei WANG, Xiaojin HAN, Hongbing XIANG, Sheng ZHOU, Anker CHEN
  • Publication number: 20240098959
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen