Patents by Inventor Shih-Jye Shen

Shih-Jye Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070247902
    Abstract: A method for operating a single-poly, single-transistor (1-T) non-volatile memory (NVM) cell. The NVM cell includes a gate on a P substrate, a gate dielectric layer, an N drain region and an N source region. N channel is defined between the N drain region and N source region. The NVM cell is programmed by breaking down the gate dielectric layer. To read the NVM cell, a positive voltage is provided to N drain region, a positive voltage is provided to the gate, and grounding the N source region and the P substrate.
    Type: Application
    Filed: January 23, 2007
    Publication date: October 25, 2007
    Inventors: Hsin-Ming Chen, Shih-Jye Shen, Ching-Hsiang Hsu
  • Patent number: 7262457
    Abstract: A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 28, 2007
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Patent number: 7250654
    Abstract: A single-poly non-volatile memory device invented to integrate into logic process is disclosed. This non-volatile memory device includes a memory cell unit comprising a PMOS access transistor that is serially connected to a PMOS storage transistor formed in a cell array area, and, in a peripheral circuit area, a high-voltage MOS transistor having a high-voltage gate insulation layer is provided. The PMOS access transistor has an access gate oxide layer that has a thickness equal to the thickness of the high-voltage gate insulation layer in a peripheral circuit area.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: July 31, 2007
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070109861
    Abstract: A single-poly non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly non-volatile memory cell includes an ion well, a gate formed on the ion well, a gate dielectric layer between the gate and the ion well, a dielectric stack layer on sidewalls of the gate, a source doping region and a drain doping region. The dielectric stack layer includes a first oxide layer deposited on the sidewalls of the gate and extends to the ion well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 17, 2007
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070108507
    Abstract: A non-volatile memory formed on a first conductive type substrate is provided. The non-volatile memory includes a gate, a second conductive type drain region, a charge storage layer, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region is formed in the first conductive type substrate at the first side of the gate. The charge storage layer is formed on the first conductive type substrate at the first side of the gate and between the second conductive type drain region and the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate at the second side of the gate. The second side is opposite to the first side.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 17, 2007
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070108508
    Abstract: A single-poly, P-channel non-volatile memory (NVM) cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly, P-channel non-volatile memory cell includes an N well, a gate formed on the N well, a gate dielectric layer between the gate and the N well, an ONO layers on sidewalls of the gate, a P+ source doping region and a P+ drain doping region. The ONO layers include a first oxide layer deposited on the sidewalls of the gate and extends to the N well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer. The metallurgical junction of P-type drain and N-type well locates underneath the sidewall ONO layers.
    Type: Application
    Filed: March 24, 2006
    Publication date: May 17, 2007
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen, Shih-Jye Shen, Ya-Chin King, Ching-Hsiang Hsu
  • Publication number: 20070108470
    Abstract: A semiconductor device formed on a first conductive type substrate is provided. The device includes a gate, a second conductive type drain region, a second conductive type source region, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region and the second conductive type source region are formed in the first conductive type substrate at both sides of the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate between the gate and the second conductive type source region.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 17, 2007
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070109872
    Abstract: A single-poly, P-channel non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly, P-channel non-volatile memory cell includes an N well, a gate formed on the N well, a gate dielectric layer between the gate and the N well, an ONO layer on sidewalls of the gate, a P+ source doping region and a P+ drain doping region. The ONO layer includes a first oxide layer deposited on the sidewalls of the gate and extends to the N well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer.
    Type: Application
    Filed: April 28, 2006
    Publication date: May 17, 2007
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen, Shih-Jye Shen, Ya-Chin King, Ching-Hsiang Hsu
  • Publication number: 20070111357
    Abstract: A non-volatile memory formed on a first conductive type substrate is provided. The non-volatile memory includes a gate, a second conductive type drain region, a charge storage layer, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region is formed in the first conductive type substrate at the first side of the gate. The charge storage layer is formed on the first conductive type substrate at the first side of the gate and between the second conductive type drain region and the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate at the second side of the gate. The second side is opposite to the first side.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 17, 2007
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070109869
    Abstract: A non-volatile memory formed on a first conductive type substrate is provided. The non-volatile memory includes a gate, a second conductive type drain region, a charge storage layer, and a second conductive type first lightly doped region. The gate is formed on the first conductive type substrate. The second conductive type drain region is formed in the first conductive type substrate at the first side of the gate. The charge storage layer is formed on the first conductive type substrate at the first side of the gate and between the second conductive type drain region and the gate. The second conductive type first lightly doped region is formed in the first conductive type substrate at the second side of the gate. The second side is opposite to the first side.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 17, 2007
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Shih-Chen Wang, Hsin-Ming Chen, Chun-Hung Lu, Ming-Chou Ho, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20070109860
    Abstract: A single-poly, P-channel non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly, P-channel non-volatile memory cell includes an N well, a gate formed on the N well, a gate dielectric layer between the gate and the N well, an ONO layer on sidewalls of the gate, a P+ source doping region and a P+ drain doping region. The ONO layer include a first oxide layer deposited on the sidewalls of the gate and extends to the N well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer. The metallurgical junction of P-type drain and N-type well locates underneath the ONO sidewall.
    Type: Application
    Filed: March 24, 2006
    Publication date: May 17, 2007
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen, Shih-Jye Shen, Ya-Chin King, Ching-Hsiang Hsu
  • Publication number: 20070102754
    Abstract: A single-poly non-volatile memory device invented to integrate into logic process is disclosed. This non-volatile memory device includes a memory cell unit comprising a PMOS access transistor that is serially connected to a PMOS storage transistor formed in a cell array area, and, in a peripheral circuit area, a high-voltage MOS transistor having a high-voltage gate insulation layer is provided. The PMOS access transistor has an access gate oxide layer that has a thickness equal to the thickness of the high-voltage gate insulation layer in a peripheral circuit area.
    Type: Application
    Filed: November 7, 2005
    Publication date: May 10, 2007
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Patent number: 7190623
    Abstract: A memory cell includes an N-type well, three P-type doped regions formed on the N-type well, a dielectric layer formed on the N-type well and between a first doped region and a second doped region of the three P-type doped regions, a first gate formed on the dielectric layer, a charge storage structure formed on the N-type well and between the second doped region and a third doped region of the three P-type doped regions, and a second gate formed on the charge storage structure. Data is stored in the memory cell by injecting electrons based on the channel-hot-hole induced hot-electron injection mechanism, the band-to-band tunneling induced electron injection mechanism and the Fowler-Nordheim tunneling mechanism. Data is erased from the memory cell by ejecting electrons based on the Fowler-Nordheim tunneling mechanism. Whether data is stored in the charge storage structure or not can be distinguished by read operation.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: March 13, 2007
    Assignee: eMemory Technologies Inc.
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Publication number: 20070045716
    Abstract: A non-volatile memory including a substrate, a first doped region, a second doped region, a third doped region, a first gate structure, and a second gate structure is disclosed. The doped regions are disposed in the substrate and the second doped region is disposed between the first doped region and the third doped region. The first gate structure is disposed on the substrate between the first doped region and the second doped region. The second gate structure is disposed on the substrate between the second doped region and the third doped region, and comprises a tunneling dielectric layer, a charge trapping structure and a gate from the bottom up.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 1, 2007
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Patent number: 7172940
    Abstract: A method of fabricating a non-volatile memory based on SONOS is disclosed. By masking the peripheral circuit area with a reverse ONO photoresist layer, the residual ONO layer that is not covered by a gate within the memory array area is etched away to expose the substrate. After the etching of the ONO layer, a channel adjustment doping is carried out subsequently using the reverse ONO photoresist layer as an implant mask, thereby forming lightly doped regions next to the gate within the memory array area. Finally, the reverse ONO photoresist layer is then stripped.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: February 6, 2007
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20050282332
    Abstract: A memory cell includes an N-type well, three P-type doped regions formed on the N-type well, a dielectric layer formed on the N-type well and between a first doped region and a second doped region of the three P-type doped regions, a first gate formed on the dielectric layer, a charge storage structure formed on the N-type well and between the second doped region and a third doped region of the three P-type doped regions, and a second gate formed on the charge storage structure. Data is stored in the memory cell by injecting electrons based on the channel-hot-hole induced hot-electron injection mechanism, the band-to-band tunneling induced electron injection mechanism and the Fowler-Nordheim tunneling mechanism. Data is erased from the memory cell by ejecting electrons based on the Fowler-Nordheim tunneling mechanism. Whether data is stored in the charge storage structure or not can be distinguished by read operation.
    Type: Application
    Filed: August 23, 2005
    Publication date: December 22, 2005
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Patent number: 6975545
    Abstract: A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: December 13, 2005
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Publication number: 20050179095
    Abstract: A memory cell is disclosed. The memory cell includes an N-well, three P-type doped regions formed on the N-type well, a first stacked dielectric layer formed on the N-type well and between a first doped region and a second doped region from among the three P-type doped regions, a first gate formed on the first stacked dielectric layer, a second stacked dielectric layer formed on the N-type well and between the second doped region and a third doped region from among the three P-type doped regions, and a second gate formed on the second stacked dielectric layer.
    Type: Application
    Filed: April 28, 2005
    Publication date: August 18, 2005
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Patent number: 6922363
    Abstract: A method for writing a memory module includes providing a plurality of memory cells. Each memory cell includes a substrate, a P-type drain and source, a gate, and a stack dielectric layer which stores 2-bit data. Memory cells are arranged in a matrix with gates and sources on the same row connected respectively to the same word line and same source line, and drains on the same column connected to the same bit line. Each line receives a respective voltage with the word line of the memory cell to be written receiving voltage to turn on its P-type channel, the word line of the memory cell not to be written receiving voltage to turn off its P-type channel, and the bit line of the memory cell to be written receiving voltage so that a hot hole in its P-type channel induces hot electron injection into its stack dielectric layer.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: July 26, 2005
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Shih-Jye Shen, Hsin-Ming Chen, Hai-Ming Lee
  • Patent number: 6920067
    Abstract: A system on chip (SOC) contains a core circuit and an input/output (I/O) circuit embedded with an array of single-poly erasable programmable read only memory cells, each of which comprises a first PMOS transistor serially connected to a second PMOS transistor. The first and second PMOS transistors are both formed on an N-well of a P-type substrate. The first PMOS transistor includes a single-poly floating gate, a first P+ doped drain region and a first P+ doped source region, the second PMOS transistor includes a single-poly select gate and a second P+ doped source region, and the first P+ doped source region of the first PMOS transistor serves as a drain of the second PMOS transistor.
    Type: Grant
    Filed: December 25, 2002
    Date of Patent: July 19, 2005
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Chih-Hsun Chu, Ming-Chou Ho, Shih-Jye Shen