Patents by Inventor Shinichi Mitani

Shinichi Mitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8434452
    Abstract: A control device for an internal combustion engine according to the present embodiment, includes: cooling units 40L and 40R arranged on a path where a coolant is circulated, and cooling an exhaust gas of the internal combustion engine with the coolant flowing through the cooling units 40L and 40R; and ECUs 7L and 7R estimating a heat quantity of the exhaust gas, and deciding whether or not to prohibit an idle reduction control in response to the estimated heat quantity of the exhaust gas.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: May 7, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Mitani, Shigemasa Hirooka, Takashi Tsunooka, Akira Satou, Shigeyuki Urano
  • Publication number: 20130084690
    Abstract: A semiconductor device manufacturing apparatus includes a chamber in which a wafer is loaded; a first gas supply unit for supplying a process gas into the chamber; a gas exhaust unit for exhausting a gas from the chamber; a wafer support member on which the wafer is placed; a ring on which the wafer support member is placed; a rotation drive control unit connected to the ring to rotate the wafer; a heater disposed in the ring and comprising a heater element for heating the wafer to a predetermined temperature and including an SiC layer on at least a surface, and a heater electrode portion molded integrally with a heater element and including an SiC layer on at least a surface; and a second gas supply unit for supplying an SiC source gas into the ring.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 4, 2013
    Applicant: NuFlare Technology, Inc.
    Inventors: Kunihiko Suzuki, Shinichi Mitani
  • Patent number: 8393313
    Abstract: A control apparatus and control method is provided for an internal combustion engine that includes a vaporized fuel tank in which vaporized fuel is stored, and a normally-closed vaporized fuel supply valve that opens and closes a connecting portion between the vaporized fuel tank and a surge tank. This apparatus and method produce vaporized fuel by injecting fuel into the tank while the vaporized fuel supply valve is closed while the engine is operating, then open the vaporized fuel supply valve at engine startup and supply the vaporized fuel stored in the tank to the surge tank. If there is no vaporized fuel remaining in the vaporized fuel tank when the engine stops, vacuum is generated in the vaporized fuel tank by temporarily opening the vaporized fuel supply valve before the engine stops. Vaporized fuel is then produced by injecting fuel into the vaporized fuel tank in this vacuum state.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Sato, Yasuyuki Irisawa, Shinichi Mitani, Takashi Tsunooka, Shigeyuki Urano, Satoshi Yoshizaki
  • Publication number: 20130036968
    Abstract: A film-forming apparatus and method comprising a film-forming chamber for supplying a reaction gas, a cylindrical shaped liner provided in the film-forming chamber, a straightening vane provided above the liner for the reaction gas to pass through, wherein the outside of the film-forming chamber connects the inside of the liner via a substrate transfer portion provided at the wall of the film-forming chamber by moving the straightening vane from the position that the straightening vane closes the upper opening of the liner. A substrate supporting portion provided in the liner, for supporting the substrate before the film-forming to move the substrate in a vertical direction, a substrate transfer unit capable of moving inside the film-forming chamber through the substrate transfer portion, wherein the substrate is transferred between the substrate supporting portion and the substrate transfer unit.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Inventors: Kunihiko Suzuki, Shinichi Mitani, Yuusuke Sato
  • Publication number: 20130013173
    Abstract: An engine includes a normal fuel tank, fuel gas tank, an in-tank injection valve and a fuel gas supply valve. During operation of the engine, in a state where the fuel gas supply valve is closed, a fuel is injected into the fuel gas tank through the in-tank injection valve to generate a fuel gas by vaporizing the fuel. The fuel gas is stored in the fuel gas tank and is maintained in the gas phase due to the natural decompression even after the engine is stopped. To start the engine, the fuel gas supply valve is opened to supply the fuel gas in the fuel gas tank to a surge tank. Thus, compared with the case where the fuel gas is generated at the start of the engine, the fuel gas can be quickly supplied into the cylinder, so that the ability to start the engine is improved.
    Type: Application
    Filed: March 19, 2010
    Publication date: January 10, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Tsunooka, Yasuyuki Irisawa, Shinichi Mitani, Satoshi Yoshizaki, Akira Satou, Shigeyuki Urano
  • Publication number: 20130000546
    Abstract: A method of vapor phase epitaxy that is one embodiment of the present invention characteristically includes loading a wafer in a reaction chamber and mounting the wafer on a supporting section; heating the wafer by a heater provided under the supporting section; performing deposition on the wafer by supplying a process gas onto the wafer while rotating the wafer; detecting a temperature distribution at least in a circumferential direction at a peripheral edge section of the wafer; and determining a presence/absence of adhesion between the wafer and the supporting section based on the detected temperature distribution.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Inventors: Kunihiko SUZUKI, Shinichi Mitani
  • Patent number: 8337622
    Abstract: A semiconductor device manufacturing apparatus includes a chamber in which a wafer is loaded; a first gas supply unit for supplying a process gas into the chamber; a gas exhaust unit for exhausting a gas from the chamber; a wafer support member on which the wafer is placed; a ring on which the wafer support member is placed; a rotation drive control unit connected to the ring to rotate the wafer; a heater disposed in the ring and comprising a heater element for heating the wafer to a predetermined temperature and including an SiC layer on at least a surface, and a heater electrode portion molded integrally with a heater element and including an SiC layer on at least a surface; and a second gas supply unit for supplying an SiC source gas into the ring.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: December 25, 2012
    Assignee: NuFlare Technology, Inc.
    Inventors: Kunihiko Suzuki, Shinichi Mitani
  • Patent number: 8334214
    Abstract: A susceptor treatment method including placing a first substrate on a susceptor and forming a Si film on the first substrate by epitaxial growth, placing a second substrate on the susceptor in place of the first substrate and forming a SiC film on the second substrate by epitaxial growth, and allowing HCl gas to flow downward from above the susceptor while the susceptor, from which the second substrate has been removed, is heated to a temperature and rotated to remove the remaining crystalline grains derived from the epitaxial growth of Si film and the SiC film on the susceptor.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 18, 2012
    Assignees: NuFlare Technology, Inc., Denso Corporation
    Inventors: Kunihiko Suzuki, Shinichi Mitani
  • Patent number: 8322128
    Abstract: A hydrogen engine 10 supplies hydrogen, oxygen, and an argon gas serving as a working to a combustion chamber 21 to combust the hydrogen. H2O in a recirculating gas discharged from the combustion chamber 21 is separated and eliminated from the gas by a condenser 66. A three-way valve 72 is switched over in such a manner that the recirculating gas flows through a product eliminating section 70 (a carbon dioxide absorbing unit 71), when the concentration of carbon dioxide in the recirculating gas is higher than a predetermined concentration, so that the carbon dioxide is separated and eliminated from the recirculating gas.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: December 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Mitani
  • Publication number: 20120272641
    Abstract: A particulate matter control system includes: an electrode that is provided in an exhaust pipe of an internal combustion engine; a power supply that is connected to the electrode and that applies voltage; a particle number detecting unit that detects the particle number of particulate matter on a downstream side of the electrode; a calculation unit that calculates a reduction rate of the particle number at the time when voltage is applied on the basis of the particle number detected by the particle number detecting unit at the time when voltage is applied and the particle number detected by the particle number detecting unit at the time when no voltage is applied; and a determination unit that determines that there is a failure when the reduction rate of the particle number, calculated by the calculation unit, is smaller than a threshold.
    Type: Application
    Filed: April 4, 2012
    Publication date: November 1, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Mitani, Hiroshi Nomura, Eiji Murase
  • Publication number: 20120255284
    Abstract: A particulate matter treatment system includes an electrode provided in an exhaust passage of an internal combustion engine, a power supply connected to the electrode and operable to apply a voltage to the electrode, a particle number detector that detects the number of particles of particulate matter downstream of the electrode, and a determining device that determines that the system is at fault when an absolute value of the amount of change in the number of particles of particulate matter detected by the particle number detector when the voltage applied from the power supply to the electrode is changed is smaller than a threshold value.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 11, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Mitani, Hiroshi Nomura, Eiji Murase
  • Publication number: 20120244685
    Abstract: A semiconductor manufacturing apparatus includes: a plurality of reaction chambers into which wafers are introduced and deposition process is performed; a material gas supply mechanism that includes a plurality of material gas supply lines that respectively supply a material gas to the plurality of reaction chambers and a flow rate control mechanism that controls a flow rate of the marital gas in the material gas supply lines; a carrier gas supply mechanism that includes a plurality of carrier gas supply lines that respectively supplies a carrier gas into the plurality of reaction chambers; and a material gas switching mechanism that intermittently opens and closes the plurality of material gas supply lines respectively so that at least one of the plurality of material gas supply lines comes to be in an opened state at a same time, and sequentially switches the reaction chamber to which the material gas is supplied.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 27, 2012
    Applicant: NUFLARE TECHNOLOGY, INC.
    Inventors: Kunihiko SUZUKI, Shinichi MITANI
  • Patent number: 8250869
    Abstract: An exhaust heat recovery apparatus includes a Stirling engine and a clutch. The Stirling engine produces motive power by recovering thermal energy from exhaust gas discharged from an internal combustion engine from which exhaust heat is recovered. The motive power produced by the Stirling engine is transmitted to an internal combustion engine transmission through the clutch and an exhaust heat recovery device transmission, and combined with the motive power produced by the internal combustion engine through the internal combustion engine transmission, and is output from an output shaft. If rapid acceleration is required, and the increase in the rotation speed of the Stirling engine therefore lags behind the increase in the rotation speed of the internal combustion engine, the clutch is released. With this configuration, reduction in the power output from the heat engine, from which exhaust heat is recovered, is restricted, and the degradation of the acceleration performance is minimized.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisaku Sawada, Shinichi Mitani, Hiroshi Yaguchi
  • Patent number: 8166759
    Abstract: An exhaust heat recovery apparatus includes a reciprocating internal combustion engine in which a piston reciprocates in a cylinder to generate motive power; and a Stirling engine that recovers the thermal energy of the exhaust gas discharged from the internal combustion engine and converts the thermal energy into kinetic energy. The Stirling engine is united with the internal combustion engine. A heater that the Stirling engine includes is disposed in an exhaust manifold of the internal combustion engine. With this configuration, it is possible to restrict reduction in the power output from the exhaust heat recovery means.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: May 1, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yaguchi, Daisaku Sawada, Shinichi Mitani
  • Publication number: 20120059566
    Abstract: In a control device for an internal combustion engine according to the present embodiment, the control device includes: cooling units arranged on a path where a coolant is circulated, and cooling an exhaust gas of an engine with the coolant flowing through the cooling units; an atmospheric pressure sensor detecting an atmosphere pressure; and ECUs deciding whether or not to perform an exhaust gas temperature control for suppressing a temperature of the exhaust gas based on whether or not a heat quantity is more than a decision value, and correcting the decision value to be lower as the atmosphere pressure is lower.
    Type: Application
    Filed: April 16, 2009
    Publication date: March 8, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Tsunooka, Shigemasa Hirooka, Shinichi Mitani, Akira Satou, Shigeyuki Urano
  • Publication number: 20120031330
    Abstract: According to this embodiment, a semiconductor substrate manufacturing apparatus for epitaxial growth in which gases are supplied to a wafer placed on a susceptor and in which a heater is provided on the back surface of the susceptor. As a result of this epitaxial growth, SiC film is deposited onto the susceptor in the film-forming chamber. The susceptor is then moved into a separate chamber and the SiC film deposited on the susceptor during the epitaxial process is removed. After removal of SiC film, regeneration of the SiC film of the susceptor occurs. This semiconductor substrate manufacturing apparatus makes it possible to remove film deposited on a susceptor during epitaxial growth that would otherwise limit manufacturing yield.
    Type: Application
    Filed: July 21, 2011
    Publication date: February 9, 2012
    Inventors: Toshiro TSUMORI, Shinichi Mitani, Kunihiko Suzuki
  • Publication number: 20120035830
    Abstract: A control device for an internal combustion engine according to the present embodiment, includes: cooling units 40L and 40R arranged on a path where a coolant is circulated, and cooling an exhaust gas of the internal combustion engine with the coolant flowing through the cooling units 40L and 40R; and ECUs 7L and 7R estimating a heat quantity of the exhaust gas, and deciding whether or not to prohibit an idle reduction control in response to the estimated heat quantity of the exhaust gas.
    Type: Application
    Filed: April 16, 2009
    Publication date: February 9, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Mitani, Shigemasa Hirooka, Takashi Tsunooka, Akira Satou, Shigeyuki Urano
  • Publication number: 20120035829
    Abstract: A control device for an internal combustion engine according to an embodiment includes: cooling units arranged on a path where a coolant is circulated, and cooling an exhaust gas of the internal combustion engine with the coolant flowing through the cooling units; a pump circulating the coolant; and ECUs estimating a heat quantity of the exhaust gas and deciding whether or not to operate the pump after an ignition switch is detected to be OFF in response to the estimated heat quantity of the exhaust gas.
    Type: Application
    Filed: April 16, 2009
    Publication date: February 9, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Mitani, Shigemasa Hirooka, Takashi Tsunooka, Akira Satou, Shigeyuki Urano
  • Publication number: 20120028445
    Abstract: A susceptor treatment method including placing a first substrate on a susceptor and forming a Si film on the first substrate by epitaxial growth, placing a second substrate on the susceptor in place of the first substrate and forming a SiC film on the second substrate by epitaxial growth, and allowing HCl gas to flow downward from above the susceptor while the susceptor, from which the second substrate has been removed, is heated to a temperature and rotated to remove the remaining crystalline grains derived from the epitaxial growth of Si film and the SiC film on the susceptor.
    Type: Application
    Filed: June 28, 2011
    Publication date: February 2, 2012
    Inventors: Kunihiko SUZUKI, Shinichi Mitani
  • Publication number: 20110308500
    Abstract: A control apparatus and control method is provided for an internal combustion engine that includes a vaporized fuel tank in which vaporized fuel is stored, and a normally-closed vaporized fuel supply valve that opens and closes a connecting portion between the vaporized fuel tank and a surge tank. This apparatus and method produce vaporized fuel by injecting fuel into the tank while the vaporized fuel supply valve is closed while the engine is operating, then open the vaporized fuel supply valve at engine startup and supply the vaporized fuel stored in the tank to the surge tank. If there is no vaporized fuel remaining in the vaporized fuel tank when the engine stops, vacuum is generated in the vaporized fuel tank by temporarily opening the vaporized fuel supply valve before the engine stops. Vaporized fuel is then produced by injecting fuel into the vaporized fuel tank in this vacuum state.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 22, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Sato, Yasuyuki Irisawa, Shinichi Mitani, Takashi Tsunooka, Shigeyuki Urano, Satoshi Yoshizaki