Patents by Inventor Shinji Takeoka

Shinji Takeoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220378375
    Abstract: A bioelectrode in which an electrode layer can deform in association with the unevenness of the installation surface of the biological surface so as to adhere to the installation surface, and which can be easily transported and stored, a production method and an installation method for the bioelectrode. It is a bioelectrode in which a flexible electrode that is to directly contact a biological surface is formed from an electrode layer that includes a conductive polymer and deforms in association with an installation surface of the biological surface so as to adhere to the installation surface, and an elastomer layer that is layered on one surface side of the electrode layer and deforms in association with the installation surface and the electrode layer, wherein the flexible electrode is bonded to a water-permeable layer that serves as a support via a water-soluble sacrificial layer that includes a water-soluble material.
    Type: Application
    Filed: October 22, 2020
    Publication date: December 1, 2022
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Syo MIHARA, Shinji TAKEOKA, Takenori NAKANISHI
  • Publication number: 20220221450
    Abstract: Provided is a temperature-responsive fluorescent particle comprising at least one type of fluorescent molecule in a molecular assembly comprising and constituted by at least one type of amphiphilic molecule, wherein the fluorescent molecule emits fluorescence when the molecular assembly is in the liquid phase and it is quenched when the molecular assembly is in the solid phase, due to a temperature-responsive solid-liquid phase transition, so that fluorescence emission and quenching of the fluorescent molecule are reversibly switched in a temperature responsive manner. Also provided is a temperature-responsive fluorescent probe comprising the temperature-responsive fluorescent particle the surface of which is modified with a biomolecule recognition element, and methods for detecting and quantitatively determining a biomolecule with the temperature-responsive fluorescent probe.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 14, 2022
    Applicants: FPS INC., NANOTHETA INC.
    Inventors: Shinji TAKEOKA, Keitaro SOU, Runkai HU, Chi-Lik Ken LEE, Li Yan CHAN
  • Publication number: 20220096707
    Abstract: A hemostatic material includes a lipid that can accelerate adhesion or aggregation of platelets even if the lipid does not carry a protein or a peptide involved in adhesion or aggregation of platelets such as GPIb and H12 and, to achieve the object, provides a hemostatic material including a water-insoluble base and a lipid supported on a surface of the base, wherein the lipid includes one or two or more anionic lipids.
    Type: Application
    Filed: October 17, 2019
    Publication date: March 31, 2022
    Applicant: Toray Industries, Inc.
    Inventors: Shinji Takeoka, Keiko Nakahara, Mamoru Nishiura, Shinya Otsubo, Hajimu Kurumatani, Toru Arakane, Masanobu Takeda, Makoto Nakahara, Kumi Oyama
  • Patent number: 11264145
    Abstract: An extensible electroconductive wiring material includes a flexible electroconductive material and insulating elastic bodies and, wherein the flexible electroconductive material having an electroconductive layer has vent peripheral edge portions in which vent holes and/or vent slits are penetrated and aligned in series and/or in parallel along an energization direction of the electroconductive layer while the vent peripheral edge portions are energizably linked, and the vent peripheral edge portions is sealed and covered by the insulating elastic bodies, so as not to be exposed; and the insulating elastic bodies, have penetration slits, and/or penetration holes which penetrate therethrough while matching the vent peripheral edge portions and are smaller than the vent holes and the vent slits. The extensible electroconductive wiring module has a plurality of these extensible electroconductive wiring materials.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 1, 2022
    Assignee: ASAHI FR R&D CO., LTD.
    Inventors: Shinji Takeoka, Toshinori Fujie, Kento Yamagishi, Hiroshi Takami, Masaru Azuma, Syo Mihara
  • Publication number: 20210387943
    Abstract: A carboxylic acid-type lipid can accelerate adhesion or aggregation of platelets even if the carboxylic acid-type lipid does not carry a protein involved in adhesion or aggregation of platelets or a peptide corresponding to an active site of the protein; a lipid particle and a lipid membrane each include the carboxylic acid-type lipid; and a platelet aggregation accelerating agent, a platelet adhesion accelerating agent, a hemostatic agent and a platelet substitute each include the carboxylic acid-type lipid, the lipid particle or the lipid membrane. A carboxylic acid-type lipid is selected from carboxylic acid-type lipids represented by formulas (I) to (VI), a lipid particle includes the carboxylic acid-type lipid, a lipid membrane includes the carboxylic acid-type lipid, and a platelet aggregation accelerating agent, a platelet adhesion accelerating agent, a hemostatic agent and a platelet substitute each include the carboxylic acid-type lipid, the lipid particle or the lipid membrane.
    Type: Application
    Filed: October 17, 2019
    Publication date: December 16, 2021
    Inventors: Shinji Takeoka, Keiko Nakahara, Mamoru Nishiura, Shinya Otsubo, Hajimu Kurumatani, Toru Arakane
  • Patent number: 10940229
    Abstract: A material for adhesion prevention can be adhered to biological tissue with certainty and has improved tissue adhesiveness and biodegradability. Such material for adhesion prevention is composed of: a 1- to 1,000-?m-thick water-soluble support layer comprising a water-soluble polymer; and a 1- to 1,000-?m-thick adhesion prevention layer comprising a biodegradable polymer. The biodegradable polymer has a structure in which a branched polyalkylene glycol comprising 3 to 8 terminal hydroxyl groups per molecule is bound to a polyhydroxy alkanoic acid, and a mass ratio of the branched polyalkylene glycol relative to the total mass is 1% to 30%.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 9, 2021
    Assignees: Toray Industries, Inc., Nanotheta Co., Ltd.
    Inventors: Akihiro Saito, Megumi Nakanishi, Kazuhiro Tanahashi, Toru Arakane, Motonori Hochi, Ai Suzuki, Koji Okabayashi, Shinji Takeoka, Toshinori Fujie, Yuya Ishiduka, Shinya Ohtsubo
  • Publication number: 20200411215
    Abstract: An extensible electroconductive wiring material includes a flexible electroconductive material and insulating elastic bodies and, wherein the flexible electroconductive material having an electroconductive layer has vent peripheral edge portions in which vent holes and/or vent slits are penetrated and aligned in series and/or in parallel along an energization direction of the electroconductive layer while the vent peripheral edge portions are energizably linked, and the vent peripheral edge portions is sealed and covered by the insulating elastic bodies, so as not to be exposed; and the insulating elastic bodies, have penetration slits, and/or penetration holes which penetrate therethrough while matching the vent peripheral edge portions and are smaller than the vent holes and the vent slits. The extensible electroconductive wiring module has a plurality of these extensible electroconductive wiring materials.
    Type: Application
    Filed: December 14, 2018
    Publication date: December 31, 2020
    Applicant: ASAHI FR R&D CO., LTD.
    Inventors: Shinji TAKEOKA, Toshinori FUJIE, Kento YAMAGISHI, Hiroshi TAKAMI, Masaru AZUMA, Syo MIHARA
  • Patent number: 10858490
    Abstract: A porous ultra-thin polymer film has a film thickness of 10 nm-1000 nm. A method of producing the porous ultra-thin polymer film includes dissolving two types of mutually-immiscible polymers in a first solvent in an arbitrary proportion to obtain a solution; applying the solution onto a substrate and then removing the first solvent from the solution applied onto the substrate to obtain a phase-separated ultra-thin polymer film that has been phase-separated into a sea-island structure; and immersing the ultra-thin polymer film in a second solvent which is a good solvent for the polymer of the island parts but a poor solvent for a polymer other than the island parts to remove the island parts, thereby obtaining a porous ultra-thin polymer film.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: December 8, 2020
    Assignees: Nanotheta Co, Ltd., Shinji Takeoka, Toray Industries, Inc.
    Inventors: Shinji Takeoka, Akihiro Saito, Hong Zhang, Natsuki Takamizawa
  • Patent number: 10590247
    Abstract: The present invention relates to a process for the preparation of films of conductive polymers, by the technique so-called roll-to-roll, which allows to obtain freestanding films having advantageous features such as toughness, flexibility, ability to adhere to different substrates, a submicron thickness and a very high ratio surface area/thickness; the present films are suitable for use in several technological applications, in particular for the development of biosensors, and in the production of flexible electronic components with large surface, suitable for wearable devices and also intended for contacting skin.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: March 17, 2020
    Assignee: FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Francesco Greco, Alessandra Zucca, Barbara Mazzolai, Shinji Takeoka, Kento Yamagishi, Toshinori Fujie, Virgilio Mattoli
  • Patent number: 10563025
    Abstract: A polymer film has an average film thickness T0 along a straight line D passing through the center of gravity of a two-dimensional projection such that the area of the polymer film is maximized, satisfies equation (a), the average value L of distances 1 from the center of gravity to edges satisfies equation (b), the Young's modulus E satisfies equation (c), and the thickness deviation ? defined by equation (d) satisfies equation (e); and a dispersion liquid and an agglomerate using the same. (a) 10 nm?T0?1000 nm, (b) 0.1 ?m?L?500 ?m, (c) 0.01 GPa?E?4.3 GPa, (d) ?=1?T1/T2, (e) 0.346E×10?9?1.499<?<?0.073E×10?9+0.316.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: February 18, 2020
    Assignees: Toray Industries, Inc., Nanotheta Co, Ltd.
    Inventors: Motonori Hochi, Yuki Sekido, Ichiro Itagaki, Toru Arakane, Shinya Ohtsubo, Shinji Takeoka, Atsushi Murata, Mao Fujii, Yuya Ishizuka, Shuichi Shoji, Jun Mizuno, Takashi Kasahara
  • Patent number: 10531988
    Abstract: A laminated film includes a polylactic acid-based resin layer and one or more acetylated hyaluronic acid layers laminated on a side of the polylactic acid-based resin layer, is highly flexible and easy to handle and, when stuck to an adherend with curved surface, the laminated film has excellent followability, adhesiveness and coating properties to the adherend, since the acetylated hyaluronic acid layer(s) can be removed easily with an aqueous solution from the polylactic acid-based resin layer in a thin film shape. The acetylated hyaluronic acid and the polylactic acid-based resin are biodegradable and, therefore, the laminated film is highly compatible with skin and organs such as visceral organs. The laminated film is optimally usable as a dermal material for external application such as a wound coating material, an adhesion inhibitor and skin care articles.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: January 14, 2020
    Assignees: Toray Industries, Inc., NANOTHETA CO, LTD.
    Inventors: Motonori Hochi, Yuki Sekido, Akihiro Saito, Shinji Takeoka, Shinya Ohtsubo, Akinari Hinoki, Manabu Kinoshita
  • Patent number: 10474188
    Abstract: Provided are an electronic device employing a polymer nanosheet, having an electronic element and a conductive wiring that are connected to each other in a solder-free manner, and exhibiting a high conformability and adhesiveness to an object for attaching including a biological tissue such as skin; and a method for manufacturing the same. The electronic device includes the electronic element; and the polymer nanosheet adhering to the electronic element. Specifically, the polymer nanosheet adheres to the electronic element in a manner such that one surface of the electronic element is entirely covered by the polymer nanosheet. It is preferred that the polymer nanosheet have a thickness of smaller than 1 ?m. Further, a conductive wiring capable of being electrically connected to the electronic element; and a power source for supplying power to the electronic element, may also be formed on the polymer nanosheet.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: November 12, 2019
    Assignee: WASEDA UNIVERSITY
    Inventors: Toshinori Fujie, Marin Okamoto, Kento Yamagishi, Atsushi Murata, Shinji Takeoka, Eiji Iwase, Mizuho Kurotobi, Hiroyasu Iwata
  • Publication number: 20190216971
    Abstract: A material for adhesion prevention can be adhered to biological tissue with certainty and has improved tissue adhesiveness and biodegradability. Such material for adhesion prevention is composed of: a 1- to 1,000-?m-thick water-soluble support layer comprising a water-soluble polymer; and a 1- to 1,000-?m-thick adhesion prevention layer comprising a biodegradable polymer. The biodegradable polymer has a structure in which a branched polyalkylene glycol comprising 3 to 8 terminal hydroxyl groups per molecule is bound to a polyhydroxy alkanoic acid, and a mass ratio of the branched polyalkylene glycol relative to the total mass is 1% to 30%.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 18, 2019
    Inventors: Akihiro Saito, Megumi Nakanishi, Kazuhiro Tanahashi, Toru Arakane, Motonori Hochi, Ai Suzuki, Koji Okabayashi, Shinji Takeoka, Toshinori Fujie, Yuya Ishizuka, Shinya Ohtsubo
  • Patent number: 10213530
    Abstract: A polymer film can be adjusted to movement or a fine uneven surface of a living body and has excellent ability to adhere to a biological tissue. The polymer film includes a block copolymer having a structure in which branched polyalkylene glycol and polyhydroxyalkanoic acid are bound to each other, wherein the polymer film has a film thickness of 10 to 1000 nm. The branched polyalkylene glycol has at least three terminal hydroxyl groups per molecule, the mass percentage of the branched polyalkylene glycol relative to the total mass of the block copolymer is 1% to 30%, and a value obtained by dividing the average molecular weight of polyhydroxyalkanoic acid in the block copolymer by X that is the number of terminal hydroxyl groups present per a single molecule of the branched polyalkylene glycol is 10000 to 30000.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: February 26, 2019
    Assignees: Toray Industries, Inc., Nanotheta Co, Ltd.
    Inventors: Akihiro Saito, Toru Arakane, Kazuhiro Tanahashi, Koji Okabayashi, Shinji Takeoka, Toshinori Fujie, Shoichiro Suzuki, Atsushi Murata, Shinya Otsubo
  • Publication number: 20180338865
    Abstract: A laminated film includes a polylactic acid-based resin layer and one or more acetylated hyaluronic acid layers laminated on a side of the polylactic acid-based resin layer, is highly flexible and easy to handle and, when stuck to an adherend with curved surface, the laminated film has excellent followability, adhesiveness and coating properties to the adherend, since the acetylated hyaluronic acid layer(s) can be removed easily with an aqueous solution from the polylactic acid-based resin layer in a thin film shape. The acetylated hyaluronic acid and the polylactic acid-based resin are biodegradable and, therefore, the laminated film is highly compatible with skin and organs such as visceral organs. The laminated film is optimally usable as a dermal material for external application such as a wound coating material, an adhesion inhibitor and skin care articles.
    Type: Application
    Filed: December 4, 2015
    Publication date: November 29, 2018
    Inventors: Motonori Hochi, Yuki Sekido, Akihiro Saito, Shinji Takeoka, Shinya Ohtsubo, Akinari Hinoki, Manabu Kinoshita
  • Patent number: 10035337
    Abstract: A method for preparing a thin film polymer structure having a functional substance on an A surface and a B surface of the film, the polymer structure being obtained by: (a) adsorbing polyfunctional molecules to a region of an arbitrary shape in an interface between a substrate body and a liquid phase; (b) polymerizing and/or crosslinking the adsorbing polyfunctional molecules to form a polymer thin film; (c) bonding a functional substance to the A surface of the formed thin film and then forming a soluble support film on the A surface; (d) exfoliating the thin film and the soluble support film from the substrate body; and (e) bonding to the B surface of the thin film a functional substance identical to or different from the functional substance bonded to the A surface and then dissolving the soluble support film with a solvent.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: July 31, 2018
    Assignees: NANOTHETA CO, LTD., TORAY INDUSTRIES, INC.
    Inventors: Shinji Takeoka, Yosuke Okamura, Toshinori Fujie, Saori Utsunomiya, Takahiro Goto
  • Publication number: 20180179352
    Abstract: A porous ultra-thin polymer film has a film thickness of 10 nm-1000 nm. A method of producing the porous ultra-thin polymer film includes dissolving two types of mutually-immiscible polymers in a first solvent in an arbitrary proportion to obtain a solution; applying the solution onto a substrate and then removing the first solvent from the solution applied onto the substrate to obtain a phase-separated ultra-thin polymer film that has been phase-separated into a sea-island structure; and immersing the ultra-thin polymer film in a second solvent which is a good solvent for the polymer of the island parts but a poor solvent for a polymer other than the island parts to remove the island parts, thereby obtaining a porous ultra-thin polymer film.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: Shinji Takeoka, Akihiro Saito, Hong Zhang, Natsuki Takamizawa
  • Publication number: 20180118905
    Abstract: A polymer film has an average film thickness T0 along a straight line D passing through the center of gravity of a two-dimensional projection such that the area of the polymer film is maximized, satisfies equation (a), the average value L of distances 1 from the center of gravity to edges satisfies equation (b), the Young's modulus E satisfies equation (c), and the thickness deviation ? defined by equation (d) satisfies equation (e); and a dispersion liquid and an agglomerate using the same. (a) 10 nm?T0?1000 nm, (b) 0.1 ?m?L?500 ?m, (c) 0.01 GPa?E?4.3 GPa, (d) ?=1?T1/T2, (e) 0.346E×10?9?1.499<?<?0.073E×10?9+0.316.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 3, 2018
    Inventors: Motonori Hochi, Yuki Sekido, Ichiro Itagaki, Toru Arakane, Shinya Ohtsubo, Shinji Takeoka, Atsushi Murata, Mao Fujii, Yuya Ishizuka, Shuichi Shoji, Jun Mizuno, Takashi Kasahara
  • Patent number: 9956751
    Abstract: A thin film polymer structure having a functional substance on the face (A surface) and reverse face (B surface) of the film, obtained by the steps of: (a) causing polyfunctional molecules to adsorb to an area of an arbitrary shape in an interface between a substrate body and a liquid phase; (b) polymerizing and/or crosslinking the adsorbing polyfunctional molecules to form a polymer thin film; (c) bonding a functional substance to the A surface of the formed thin film and then (d) forming a soluble support film thereon; exfoliating the thin film and the soluble support film from the substrate body; (e) bonding to the B surface of the thin film a functional substance identical to or different from the abovementioned functional substance and then dissolving the soluble support film with a solvent.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 1, 2018
    Assignees: NANOTHETA CO, LTD., TORAY INDUSTRIES, INC.
    Inventors: Shinji Takeoka, Yosuke Okamura, Toshinori Fujie, Saori Utsunomiya, Takahiro Goto
  • Publication number: 20180107244
    Abstract: Provided are an electronic device employing a polymer nanosheet, having an electronic element and a conductive wiring that are connected to each other in a solder-free manner, and exhibiting a high conformability and adhesiveness to an object for attaching including a biological tissue such as skin; and a method for manufacturing the same. The electronic device includes the electronic element; and the polymer nanosheet adhering to the electronic element. Specifically, the polymer nanosheet adheres to the electronic element in a manner such that one surface of the electronic element is entirely covered by the polymer nanosheet. It is preferred that the polymer nanosheet have a thickness of smaller than 1 ?m. Further, a conductive wiring capable of being electrically connected to the electronic element; and a power source for supplying power to the electronic element, may also be formed on the polymer nanosheet.
    Type: Application
    Filed: May 10, 2016
    Publication date: April 19, 2018
    Inventors: Toshinori FUJIE, Marin OKAMOTO, Kento YAMAGISHI, Atsushi MURATA, Shinji TAKEOKA, Eiji IWASE, Mizuho KUROTOBI, Hiroyasu IWATA