Patents by Inventor Shui Liu

Shui Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220357671
    Abstract: A lithography method to pattern a first semiconductor wafer is disclosed. An optical mask is positioned over the first semiconductor wafer. A first region of the first semiconductor wafer is patterned by directing light from a light source through transparent regions of the optical mask. A second region of the first semiconductor wafer is patterned by directing energy from an energy source to the second region, wherein the patterning of the second region comprises direct-beam writing.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Tsiao-Chen WU, Chi-Ming YANG, Hsu-Shui LIU
  • Publication number: 20220359248
    Abstract: In certain embodiments, a workstation includes: a cleaning station configured to clean a die vessel, wherein the die vessel is configured to secure a semiconductor die; an inspection station configured to inspect the die vessel after cleaning to determine whether the die vessel is identified as passing inspection; and a conveyor configured to move the die vessel between the cleaning station and the inspection station.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Tsung-Sheng KUO, Guan-Wei HUANG, Chih-Hung HUANG, Yang-Ann CHU, Hsu-Shui LIU, Jiun-Rong PAI
  • Patent number: 11491135
    Abstract: Provided is use of tectorigenin in the preparation of a medicament for treatment of chicken necrotic enteritis. Using tectorigenin for treating chicken necrotic enteritis can significantly reduce the degree of pathological changes in the intestinal tract of chickens with necrotic enteritis, and has a good therapeutic effect on chicken necrotic enteritis caused by Clostridium perfringens.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 8, 2022
    Assignees: SHANDONG GUANGYUAN PHARMACEUTICAL SCI. & TECH.CO., LTD, SHANDONG JINZHUJI PHARMACEUTICAL CO., LTD
    Inventors: Yunfeng Hou, Xuming Deng, Chuanjin Zhang, Shui Liu, Jianfeng Wang, Youzhi Li, Jing Nie, Junping Zhu, Guizhen Wang, Yong Zhang, Xiaoye Fan, Jian Zhang, Tingting Wang, Yonglin Zhou, Qianghua Lv
  • Patent number: 11488848
    Abstract: In certain embodiments, a workstation includes: a cleaning station configured to clean a die vessel, wherein the die vessel is configured to secure a semiconductor die; an inspection station configured to inspect the die vessel after cleaning to determine whether the die vessel is identified as passing inspection; and a conveyor configured to move the die vessel between the cleaning station and the inspection station.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Sheng Kuo, Guan-Wei Huang, Chih-Hung Huang, Yang-Ann Chu, Hsu-Shui Liu, Jiun-Rong Pai
  • Publication number: 20220317668
    Abstract: A cooling controller receives, from one or more sensors, wafer information associated with a wafer. The cooling controller determines a pattern mask area for the wafer based on the wafer information. The cooling controller determines a cooling time for the wafer based on the pattern mask area. The cooling controller causes a cooling plate to cool the wafer for a time duration equal to the cooling time. Determining the cooling time for a wafer based on a pattern mask area provides stable and consistent wafer temperatures for wafers having different mask and layout properties, which reduces mask overlay variation and increases wafer yield.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Inventors: Yung-Yao LEE, Cheng-Kang HU, Jui-Chun PENG, Hsu-Shui LIU
  • Publication number: 20220310429
    Abstract: A method includes initiating a gas flow of a first gas parallel to a wall of an interface module to create an air curtain across an opening defined in the wall. The method includes moving an interface door to reveal the opening, wherein the air curtain restrains a second gas within the interface module from passing through the opening. The method includes transferring a semiconductor wafer through the opening and moving the interface door to cover the opening. The method includes halting the gas flow of the first gas after moving the interface door to cover the opening.
    Type: Application
    Filed: August 16, 2021
    Publication date: September 29, 2022
    Inventors: Yi-Fam SHIU, Cheng-Lung WU, Yang-Ann CHU, Hsu-Shui LIU, Jiun-Rong PAI
  • Publication number: 20220293447
    Abstract: A system comprises a front opening universal pod (FOUP) configured to hold one or more semiconductor wafers and a load dock having a stage and a receiving portion extending above the stage. The FOUP is positioned on the stage. A fan filter unit (FFU) positioned above the load dock. An air flow optimizer device is disposed on the receiving portion and under the FFU. The air flow optimizer device has an inlet opening and an outlet opening and a channel extends between the inlet opening and the outlet opening.
    Type: Application
    Filed: September 2, 2021
    Publication date: September 15, 2022
    Inventors: Yi-Fam SHIU, Cheng-Lung WU, Yang-Ann CHU, Hsu-Shui LIU, Jiun-Rong PAI
  • Patent number: 11430108
    Abstract: A method includes: receiving a defect map from a defect scanner, wherein the defect map comprises at least one defect location of a semiconductor workpiece; annotating the defect map with a reference fiducial location of the semiconductor workpiece; determining a detected fiducial location within image data of the semiconductor workpiece; determining an offset correction based on comparing the detected fiducial location with the reference fiducial location; producing a corrected defect map by applying the offset correction to the defect map, wherein the applying the offset correction translocates the at least one defect location; and transferring the corrected defect map to a defect reviewer configured to perform root cause analysis based on the corrected defect map.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Ko Liao, Ya-Hsun Hsueh, Sheng-Hsiang Chuang, Hsu-Shui Liu, Jiun-Rong Pai, Shou-Wen Kuo
  • Publication number: 20220261001
    Abstract: In an embodiment a system includes: an automated vehicle configured to traverse a first predetermined path; and a sensor system located on the automated vehicle, the sensor system configured to detect a vertical obstacle along the first predetermined path along one or two floorboards ahead of the automated vehicle, wherein the automated vehicle is configured to traverse a second predetermined path in response to detecting the vertical obstacle.
    Type: Application
    Filed: May 4, 2022
    Publication date: August 18, 2022
    Inventors: Cheng-Kang HU, Cheng-Hung CHEN, Yan-Han CHEN, Feng-Kuang WU, Hsu-Shui LIU, Jiun-Rong PAI, Shou-Wen KUO
  • Patent number: 11402761
    Abstract: A lithography method to pattern a first semiconductor wafer is disclosed. An optical mask is positioned over the first semiconductor wafer. A first region of the first semiconductor wafer is patterned by directing light from a light source through transparent regions of the optical mask. A second region of the first semiconductor wafer is patterned by directing energy from an energy source to the second region, wherein the patterning of the second region comprises direct-beam writing.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Tsiao-Chen Wu, Chi-Ming Yang, Hsu-Shui Liu
  • Publication number: 20220185512
    Abstract: In certain embodiments, a system includes: an inspection station configured to receive a die vessel, wherein the inspection station is configured to inspect the die vessel for defects; a desiccant station configured to receive the die vessel from the inspection station, wherein the desiccant station is configured to add a desiccant to the die vessel; a bundle station configured to receive the die vessel from the desiccant station, wherein the bundle station is configured to combine the die vessel with another die vessel as a die bundle; and a bagging station configured to receive the die bundle from the bundle station, wherein the bagging station is configured to dispose the die bundle in a die bag and to heat seal the die bag with the die bundle inside.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 16, 2022
    Inventors: Tsung-Sheng KUO, Hsu-Shui LIU, Jiun-Rong PAI, Yang-Ann CHU, Chieh-Chun LIN, Shine CHEN
  • Publication number: 20220189792
    Abstract: An apparatus for handling wafer carriers in a semiconductor fabrication facility (FAB) is disclosed. In one example, the apparatus includes: a table configured to receive a wafer carrier having a first door and operable to hold a plurality of wafers; an opening mechanism configured to open the first door of the wafer carrier; and a door storage space configured to store the first door. The apparatus may be either located on a floor of the FAB or physically coupled to a ceiling of the FAB.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 16, 2022
    Inventors: Tsung-Sheng KUO, Yang-Ann CHU, Alan YANG, Vic HUANG, Hsu-Shui LIU, Jiun-Rong PAI
  • Patent number: 11334080
    Abstract: In an embodiment a system includes: an automated vehicle configured to traverse a first predetermined path; and a sensor system located on the automated vehicle, the sensor system configured to detect a vertical obstacle along the first predetermined path along one or two floorboards ahead of the automated vehicle, wherein the automated vehicle is configured to traverse a second predetermined path in response to detecting the vertical obstacle.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Kang Hu, Cheng-Hung Chen, Yan-Han Chen, Feng-Kuang Wu, Hsu-Shui Liu, Jiun-Rong Pai, Shou-Wen Kuo
  • Patent number: 11299302
    Abstract: In certain embodiments, a system includes: an inspection station configured to receive a die vessel, wherein the inspection station is configured to inspect the die vessel for defects; a desiccant station configured to receive the die vessel from the inspection station, wherein the desiccant station is configured to add a desiccant to the die vessel; a bundle station configured to receive the die vessel from the desiccant station, wherein the bundle station is configured to combine the die vessel with another die vessel as a die bundle; and a bagging station configured to receive the die bundle from the bundle station, wherein the bagging station is configured to dispose the die bundle in a die bag and to heat seal the die bag with the die bundle inside.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Sheng Kuo, Hsu-Shui Liu, Jiun-Rong Pai, Yang-Ann Chu, Chieh-Chun Lin, Shine Chen
  • Patent number: 11270900
    Abstract: An apparatus for handling wafer carriers in a semiconductor fabrication facility (FAB) is disclosed. In one example, the apparatus includes: a table configured to receive a wafer carrier having a first door and operable to hold a plurality of wafers; an opening mechanism configured to open the first door of the wafer carrier; and a door storage space configured to store the first door. The apparatus may be either located on a floor of the FAB or physically coupled to a ceiling of the FAB.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Sheng Kuo, Yang-Ann Chu, Alan Yang, Vic Huang, Hsu-Shui Liu, Jiun-Rong Pai
  • Publication number: 20220059393
    Abstract: Disclosed is a vacuum chuck and a method for securing a warped semiconductor substrate during a semiconductor manufacturing process so as to improve its flatness during a semiconductor manufacturing process. For example, a semiconductor manufacturing system includes: a vacuum chuck configured to hold a substrate, wherein the vacuum chuck comprises, a plurality of vacuum grooves located on a top surface of the vacuum chuck, wherein the top surface is configured to face the substrate; and a plurality of flexible seal rings disposed on the vacuum chuck and extending outwardly from the top surface, wherein the plurality of flexible seal rings are configured to directly contact a bottom surface of the substrate and in adjacent to the plurality of vacuum grooves so as to form a vacuum seal between the substrate and the vacuum chuck, and wherein each of the plurality of flexible seal rings has a zigzag cross section.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 24, 2022
    Inventors: Chien-Fa LEE, Chin-Lin CHOU, Shang-Ying TSAI, Shou-Wen KUO, Kuei-Sung CHANG, Jiun-Rong PAI, Hsu-Shui LIU, Chun-wen CHENG
  • Publication number: 20220059376
    Abstract: A system and method for defect detection in a hole array on a substrate is disclosed herein. In one embodiment, a method for defect detection in a hole array on a substrate, includes: scanning a substrate surface using at least one optical detector, generating at least one image of the substrate surface; and analyzing the at least one image to detect defects in the hole array on the substrate surface based on a set of predetermined criteria.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 24, 2022
    Inventors: Becky LIAO, Sheng-Hsiang CHUANG, Cheng-Kang HU, Hsu-Shui LIU, Jiun-Rong PAI, Shou-Wen KUO
  • Publication number: 20220059415
    Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
  • Publication number: 20220029275
    Abstract: A method and an apparatus for adjusting antenna radiation power includes adjusting antenna radiation power includes: acquiring a power index identification of a triggered SAR sensor group; acquiring target radiation power corresponding to the power index identification according to a first mapping relationship; and determining a corresponding radiator according to a second mapping relationship and the SAR sensor group and adjusting radiation power of the radiator into the target radiation power. The method and apparatus may be incorporated in an electronic device.
    Type: Application
    Filed: March 17, 2021
    Publication date: January 27, 2022
    Inventors: Hua ZHANG, Xin LIU, Shui LIU
  • Publication number: 20210370363
    Abstract: A cleaning apparatus, method, and dry chamber are provided for cleaning a wafer carrier that holds wafers as part of a semiconductor fabrication process. The cleaning apparatus includes a wet chamber that receives the wafer carrier to be washed and a reservoir in fluid communication with the wet chamber. The reservoir stores a cleaning liquid that is introduced to the wafer carrier within the wet chamber during a washing operation, and a dry chamber is spaced apart from the wet chamber. The dry chamber receives the wafer carrier after the wafer carrier is washed in the wet chamber and holds the wafer carrier during a drying operation. A transport system transports the wafer carrier between the wet chamber and the dry chamber during a cleaning process.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Eason Chen, Yi-Fam Shiu, Sung-Chun Yang, Hsu-Shui Liu, Yang-Ann Chu, Jiun-Rong Pai