Patents by Inventor Stefan Alexander

Stefan Alexander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10274736
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: April 30, 2019
    Assignee: North Inc.
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20190113745
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material, an in-coupler, an out-coupler, a volume of liquid crystal carried by the volume of optically transparent material, and a controller to modulate a refractive index of the volume of liquid crystal. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal. As the light crosses a thickness of the waveguide the light passes through or within the volume of liquid crystal and is refracted according to the modulated refractive index of the volume of liquid crystal. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190113746
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material, an in-coupler, an out-coupler, a volume of liquid crystal carried by the volume of optically transparent material, and a controller to modulate a refractive index of the volume of liquid crystal. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal. As the light crosses a thickness of the waveguide the light passes through or within the volume of liquid crystal and is refracted according to the modulated refractive index of the volume of liquid crystal. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190113825
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material, an in-coupler, an out-coupler, a volume of liquid crystal carried by the volume of optically transparent material, and a controller to modulate a refractive index of the volume of liquid crystal. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal. As the light crosses a thickness of the waveguide the light passes through or within the volume of liquid crystal and is refracted according to the modulated refractive index of the volume of liquid crystal. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190113747
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material, an in-coupler, an out-coupler, a volume of liquid crystal carried by the volume of optically transparent material, and a controller to modulate a refractive index of the volume of liquid crystal. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal. As the light crosses a thickness of the waveguide the light passes through or within the volume of liquid crystal and is refracted according to the modulated refractive index of the volume of liquid crystal. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190094543
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 28, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190094544
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 28, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190094548
    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a projector and an optical waveguide positioned in an optical path between the projector and an eye of the user. For any given light signal from the projector, the optical waveguide receives the light signal at an input coupler and outputs multiple instances or copies of the light signal from multiple discrete, spatially-separated output couplers. The multiple instances or copies of the light signal may be converged by the optical waveguide directly to respective exit pupils at the user's eye or may be routed by the optical waveguide to a holographic combiner in the user's field of view from which the light signals may be converged to respective exit pupils at the user's eye. The optical waveguide employs exit pupil replication to expand the eyebox of the WHUD.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya, Stefan Alexander
  • Publication number: 20190094549
    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a projector and an optical waveguide positioned in an optical path between the projector and an eye of the user. For any given light signal from the projector, the optical waveguide receives the light signal at an input coupler and outputs multiple instances or copies of the light signal from multiple discrete, spatially-separated output couplers. The multiple instances or copies of the light signal may be converged by the optical waveguide directly to respective exit pupils at the user's eye or may be routed by the optical waveguide to a holographic combiner in the user's field of view from which the light signals may be converged to respective exit pupils at the user's eye. The optical waveguide employs exit pupil replication to expand the eyebox of the WHUD.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Stuart James Myron Nicholson, Timothy Paul Bodiya, Stefan Alexander
  • Patent number: 10235933
    Abstract: A display degradation compensation system and method for adjusting the operating conditions for pixels in an OLED display to compensate for non-uniformity or aging of the display. The system or method sets an initial value for at least one of peak luminance and an operating condition, calculates compensation values for the pixels in the display, determines the number of pixels having compensation values larger than a predetermined threshold compensation value, and if the determined number of pixels having compensation values larger than said predetermined threshold value is greater than a predetermined threshold number, adjusts the set value until said determined number of pixels is less than said predetermined threshold number.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 19, 2019
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Publication number: 20190079295
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190079294
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190079296
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190079297
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190079292
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190079293
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Publication number: 20190056596
    Abstract: A wearable heads-up display includes a support structure that in use is worn on a head of a user, a scanning laser projector carried by the support structure, and a holographic optical element carried by the support structure. The holographic optical element includes a set of holograms formed in one or more layers of holographic material. The set of holograms includes a red hologram that is exclusively responsive to red laser light incident thereon over a first range of angles of incidence, a green hologram that is exclusively responsive to blue laser light incident thereon over the first range of angles of incidence, and a blue hologram that is exclusively responsive to green laser light incident thereon over the first range of angles of incidence.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Matthew Bailey, Stefan Alexander, Vance R. Morrison, Thomas Mahon, Lloyd Frederick Holland, Jaehong Choi
  • Publication number: 20190056595
    Abstract: A holographic optical element includes a set of holograms formed in one or more layers of holographic material. The set of holograms includes a red hologram that is exclusively responsive to a first wavelength of red light incident thereon over a first range of angles of incidence, a green hologram that is exclusively responsive to a second wavelength of green light incident thereon over the first range of angles of incidence, and a blue hologram that is exclusively responsive to a third wavelength of blue light incident thereon over the first range of angles of incidence.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Matthew Bailey, Stefan Alexander, Vance R. Morrison, Thomas Mahon, Lloyd Frederick Holland, Jaehong Choi
  • Patent number: 10197805
    Abstract: Systems, devices, and methods for engineering the eyebox of a display using multiple heterogeneous exit pupils are described. The eyebox of a display includes at least two heterogeneous exit pupils that are different from one another in terms of size and/or shape. Heterogeneous exit pupils may overlap, one may encompass another, or they may be completely spatially-separated from one another. Such configurations enable specific eyebox and/or visual display configurations that can be advantageous in certain applications. An example in which a scanning laser-based wearable heads-up virtual retina display implements a holographic combiner that is engineered to provide multiple heterogeneous exit pupils is described.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: February 5, 2019
    Assignee: North Inc.
    Inventors: Matthew Bailey, Stefan Alexander, Vance R. Morrison, Thomas Mahon, Lloyd Frederick Holland, Jaehong Choi
  • Patent number: RE47257
    Abstract: A system and method for driving an AMOLED display is provided. The AMOLED display includes a plurality of pixel circuits. A voltage-programming scheme, a current-programming scheme or a combination thereof is applied to drive the display. Threshold shift information, and/or voltage necessary to obtain hybrid driving circuit may be acquired. A data sampling may be implemented to acquire a current/voltage relationship. A feedback operation may be implemented to correct the brightness of the pixel.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: February 26, 2019
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Richard I-Heng Huang, Stefan Alexander