Patents by Inventor Steven Bentley

Steven Bentley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9406803
    Abstract: A method includes forming at least one fin on a semiconductor substrate. A silicon alloy material is formed on the fin and on exposed surface portions of the substrate. A thermal process is performed to define a silicon alloy fin from the silicon alloy material and the fin and to define silicon alloy surface portions from the silicon alloy material and the exposed surface portions of the substrate. A semiconductor device includes a substrate, a fin defined on the substrate, the fin comprising a silicon alloy and having a substantially vertical sidewall, and silicon alloy surface portions on the substrate adjacent the fin.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: August 2, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ajey Poovannummoottil Jacob, Jody A. Fronheiser, Murat Kerem Akarvardar, Steven Bentley
  • Publication number: 20160190323
    Abstract: A method includes forming at least one fin on a semiconductor substrate. A silicon alloy material is formed on the fin and on exposed surface portions of the substrate. A thermal process is performed to define a silicon alloy fin from the silicon alloy material and the fin and to define silicon alloy surface portions from the silicon alloy material and the exposed surface portions of the substrate. A semiconductor device includes a substrate, a fin defined on the substrate, the fin comprising a silicon alloy and having a substantially vertical sidewall, and silicon alloy surface portions on the substrate adjacent the fin.
    Type: Application
    Filed: April 1, 2015
    Publication date: June 30, 2016
    Inventors: Ajey Poovannummoottil Jacob, Jody A. Fronheiser, Murat Kerem Akarvardar, Steven Bentley
  • Publication number: 20160190289
    Abstract: Methods for fabricating transistor structures are provided, the methods including: forming a fin structure with an upper fin portion and a lower fin portion, the upper fin portion including a sacrificial material; forming a gate structure over the fin; selectively removing the upper fin portion to form a tunnel between the gate structure and lower fin portion; and providing a channel material in the tunnel to define the channel region of the gate structure. The sacrificial material may be a material that can be selectively etched without etching the material of the lower fin portion. The channel material may further be provided to form source and drain regions of the transistor structure, which may result in a junctionless FinFET structure.
    Type: Application
    Filed: October 14, 2015
    Publication date: June 30, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Murat Kerem AKARVARDAR, Steven BENTLEY
  • Publication number: 20160181087
    Abstract: Particle-clean formulations and methods for semiconductor substrates use aqueous solutions of tetraethylammonium hydroxide (“TEAH,” C8H21NO) with or without hydrogen peroxide (H2O2). The solution pH ranges from 8-12.5. At process temperatures between 20-70 C, the TEAH solutions have been observed to remove particles from silicon-germanium (SiGe) with 20-99% Ge content in 15-300 seconds with very little etching (SiGe etch rates<1 nm/min).
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: John Foster, Steven Bentley, Sean Lin, Dave Rath, Muthumanickam Sankarapandian, Ruilong Xie
  • Patent number: 9368578
    Abstract: Obtaining a structure comprised of first and second layers of a first semiconductor materials and a strain relief buffer (SRB) layer between the first and second layers, forming a sidewall spacer on the sidewalls of an opening in the second layer, and forming a third semiconductor material in the opening, wherein the first, second and third semiconductor materials are different. A device includes first and second layers of first and second semiconductor materials and an SRB layer positioned above the first layer. The second layer is positioned above a first portion of the SRB layer, a region of a third semiconductor material is in an opening in the second layer and above a second portion of the SRB layer, and an insulating material is positioned between the region comprised of the third semiconductor material and the second layer.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: June 14, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bartlomiej Jan Pawlak, Steven Bentley, Ajey Jacob
  • Patent number: 9305846
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: April 5, 2016
    Assignees: GlobalFoundries Inc., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Steven Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Patent number: 9299775
    Abstract: Integrated circuits and methods for producing such integrated circuits are provided. A method for producing the integrated circuit includes forming dummy structures in a substrate, and forming shallow trench isolation regions between the dummy structures where the shallow trench isolation regions includes a liner overlying a core. The dummy structures are etched to expose structure bases, and the structure bases are precleaned. Replacement structures are epitaxially grown over the structure bases.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: March 29, 2016
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Steven Bentley, Kejia Wang, Sylvie Mignot, Shurong Liang
  • Patent number: 9293324
    Abstract: Semiconductor devices including a fin and method of forming the semiconductor devices are provided herein. In an embodiment, a method of forming a semiconductor device includes forming a fin overlying a semiconductor substrate. The fin is formed by epitaxially-growing a semiconductor material over the semiconductor substrate, and the fin has a first portion that is proximal to the semiconductor substrate and a second portion that is spaced from the semiconductor substrate by the first portion. A gate structure is formed over the fin and the semiconductor substrate. The first portion of the fin is etched to form a gap between the second portion and the semiconductor substrate.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Steven Bentley, Ajey P. Jacob
  • Publication number: 20160071845
    Abstract: A method includes forming at least one fin on a semiconductor substrate. A hard mask layer is formed above the fin. A first directed self-assembly material is formed above the hard mask layer. The hard mask layer is patterned using a portion of the first directed self-assembly material as an etch mask to expose a portion of the top surface of the fin. A substantially vertical nanowire is formed on the exposed top surface. At least one dimension of the substantially vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventors: Steven Bentley, Richard A. Farrell, Gerard Schmid, Ajey Poovannummoottil Jacob
  • Publication number: 20160071929
    Abstract: A method includes forming at least one fin on a semiconductor substrate. A nanowire material is formed above the fin. A hard mask layer is formed above the fin. A first directed self-assembly material is formed above the hard mask layer. The hard mask layer is patterned using a portion of the first directed self-assembly material as an etch mask to expose a portion of the nanowire material. The nanowire material is etched using the hard mask layer as an etch mask to define a substantially vertical nanowire on a top surface of the at least one fin, wherein at least one dimension of the substantially vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventors: Steven Bentley, Richard A. Farrell, Gerard Schmid, Ajey Poovannummoottil Jacob
  • Publication number: 20160071930
    Abstract: A method includes forming a first directed self-assembly material above a substrate. The substrate is patterned using the first directed self-assembly material to define at least one fin in the semiconductor substrate. A second directed self-assembly material is formed above the at least one fin to expose a top surface of the at least one fin. A substantially vertical nanowire is formed on the top surface of the at least one fin. At least a first dimension of the vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material and a second dimension of the vertical nanowire is defined by an intrinsic pitch of the second directed self-assembly material.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventors: Steven Bentley, Richard A. Farrell, Gerard Schmid, Ajey Poovannummoottil Jacob
  • Patent number: 9236309
    Abstract: Methods of fabricating one or more semiconductor fin structures are provided which include: providing a substrate structure including a first semiconductor material; providing a fin stack(s) above the substrate structure, the fin stack(s) including at least one semiconductor layer, which includes a second semiconductor material; depositing a conformal protective film over the fin stack(s) and the substrate structure; and etching the substrate structure using, at least in part, the fin stack(s) as a mask to facilitate defining the one or more semiconductor fin structures. The conformal protective film protects sidewalls of the at least one semiconductor layer of the fin stack(s) from etching during etching of the substrate structure. As one example, the first semiconductor material may be or include silicon, the second semiconductor material may be or include silicon germanium, and the conformal protective film may be, in one example, silicon nitride.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chanro Park, Steven Bentley
  • Publication number: 20150340289
    Abstract: Methods of fabricating one or more semiconductor fin structures are provided which include: providing a substrate structure including a first semiconductor material; providing a fin stack(s) above the substrate structure, the fin stack(s) including at least one semiconductor layer, which includes a second semiconductor material; depositing a conformal protective film over the fin stack(s) and the substrate structure; and etching the substrate structure using, at least in part, the fin stack(s) as a mask to facilitate defining the one or more semiconductor fin structures. The conformal protective film protects sidewalls of the at least one semiconductor layer of the fin stack(s) from etching during etching of the substrate structure. As one example, the first semiconductor material may be or include silicon, the second semiconductor material may be or include silicon germanium, and the conformal protective film may be, in one example, silicon nitride.
    Type: Application
    Filed: April 15, 2015
    Publication date: November 26, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Chanro PARK, Steven BENTLEY
  • Publication number: 20150325436
    Abstract: Semiconductor devices including a fin and method of forming the semiconductor devices are provided herein. In an embodiment, a method of forming a semiconductor device includes forming a fin overlying a semiconductor substrate. The fin is formed by epitaxially-growing a semiconductor material over the semiconductor substrate, and the fin has a first portion that is proximal to the semiconductor substrate and a second portion that is spaced from the semiconductor substrate by the first portion. A gate structure is formed over the fin and the semiconductor substrate. The first portion of the fin is etched to form a gap between the second portion and the semiconductor substrate.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 12, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Steven Bentley, Ajey P. Jacob
  • Patent number: 9178036
    Abstract: One illustrative method disclosed herein includes, among other things, performing at least one recess etching process such that a first portion of a high-k oxide gate insulation layer and a first portion of a metal oxide layer is positioned entirely within a first gate cavity and a second portion of the high-k oxide gate insulation layer, a conformal patterned masking layer and a second portion of the metal oxide layer is positioned entirely within a second gate cavity, performing at least one heating process to form a composite metal-high-k oxide alloy gate insulation layer in the first gate cavity, while preventing metal from the metal oxide material from being driven into the second portion of the high-k oxide gate insulation layer in the second gate cavity during the at least one heating process, and forming gate electrode structures in the gate cavities.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: November 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Naim Moumen, Chanro Park, Hoon Kim, Steven Bentley
  • Publication number: 20150303249
    Abstract: Integrated circuits and methods for producing such integrated circuits are provided. A method for producing the integrated circuit includes forming dummy structures in a substrate, and forming shallow trench isolation regions between the dummy structures where the shallow trench isolation regions includes a liner overlying a core. The dummy structures are etched to expose structure bases, and the structure bases are precleaned. Replacement structures are epitaxially grown over the structure bases.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 22, 2015
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Steven Bentley, Kejia Wang, Sylvie Mignot, Shurong Liang
  • Patent number: 9165837
    Abstract: Methods of forming a defect free heteroepitaxial replacement fin by annealing the sacrificial Si fin with H2 prior to STI formation are provided. Embodiments include forming a Si fin on a substrate; annealing the Si fin with H2; forming a STI layer around the annealed Si fin; annealing the STI layer; removing a portion of the annealed Si fin by etching, forming a recess; forming a replacement fin in the recess; and recessing the annealed STI layer to expose an active replacement fin.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jody Fronheiser, Murat Kerem Akarvardar, Ajey P. Jacob, Steven Bentley
  • Publication number: 20150214369
    Abstract: One illustrative device disclosed herein includes a fin defined in a semiconductor substrate having a crystalline structure, wherein at least a sidewall of the fin is positioned substantially in a <100> crystallographic direction of the substrate, a gate structure positioned around the fin, an outermost sidewall spacer positioned adjacent opposite sides of the gate structure, and an epi semiconductor material formed around portions of the fin positioned laterally outside of the outermost sidewall spacers in the source/drain regions of the device, wherein the epi semiconductor material has a substantially uniform thickness along the sidewalls of the fin.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 30, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jody A. Fronheiser, Bharat V. Krishnan, Murat Kerem Akarvardar, Steven Bentley, Ajey Poovannummoottil Jacob, Jinping Liu
  • Publication number: 20150140761
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 21, 2015
    Applicants: GLOBALFOUNDRIES INC., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Steven Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20140217467
    Abstract: Obtaining a structure comprised of first and second layers of a first semiconductor materials and a strain relief buffer (SRB) layer between the first and second layers, forming a sidewall spacer on the sidewalls of an opening in the second layer, and forming a third semiconductor material in the opening, wherein the first, second and third semiconductor materials are different. A device includes first and second layers of first and second semiconductor materials and an SRB layer positioned above the first layer. The second layer is positioned above a first portion of the SRB layer, a region of a third semiconductor material is in an opening in the second layer and above a second portion of the SRB layer, and an insulating material is positioned between the region comprised of the third semiconductor material and the second layer.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Bartlomiej Jan Pawlak, Steven Bentley, Ajey Jacob