Patents by Inventor Sun-Chieh Chien

Sun-Chieh Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8692359
    Abstract: A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Chien-Li Kuo, Ming-Tse Lin, Sun-Chieh Chien
  • Publication number: 20130140708
    Abstract: A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventors: Yung-Chang Lin, Chien-Li Kuo, Ming-Tse Lin, Sun-Chieh Chien
  • Patent number: 7332392
    Abstract: A trench capacitor structure includes a semiconductor substrate comprising thereon a STI structure. A capacitor deep trench is etched into the semiconductor substrate. Collar oxide layer is disposed on inner surface of the capacitor deep trench. A first doped polysilicon layer is disposed on the collar oxide layer and on the exposed bottom of the capacitor deep trench. A capacitor dielectric layer is formed on the first doped polysilicon layer. A second doped polysilicon layer is formed on the capacitor dielectric layer. A deep ion well is formed in the semiconductor substrate, wherein the deep ion well is electrically connected with the first doped polysilicon layer through the bottom of the capacitor deep trench. A passing gate insulation (PGI) layer is formed on the second doped polysilicon layer and on the STI structure.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: February 19, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Sun-Chieh Chien, Chien-Li Kuo, Ruey-Chyr Lee
  • Publication number: 20070238244
    Abstract: A trench capacitor structure includes a semiconductor substrate comprising thereon a STI structure. A capacitor deep trench is etched into the semiconductor substrate. Collar oxide layer is disposed on inner surface of the capacitor deep trench. A first doped polysilicon layer is disposed on the collar oxide layer and on the exposed bottom of the capacitor deep trench. A capacitor dielectric layer is formed on the first doped polysilicon layer. A second doped polysilicon layer is formed on the capacitor dielectric layer. A deep ion well is formed in the semiconductor substrate, wherein the deep ion well is electrically connected with the first doped polysilicon layer through the bottom of the capacitor deep trench. A passing gate insulation (PGI) layer is formed on the second doped polysilicon layer and on the STI structure.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 11, 2007
    Inventors: Yung-Chang Lin, Sun-Chieh Chien, Chien-Li Kuo, Ruey-Chyr Lee
  • Patent number: 6733597
    Abstract: A method is provided for cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer exposing the first metal layer. Next, a post-etching cleaning step is carried out to clean the dual damascene opening using a fluorine-based solvent. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: May 11, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6692580
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: February 17, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Publication number: 20030205249
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Application
    Filed: April 4, 2003
    Publication date: November 6, 2003
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6635565
    Abstract: A method of cleaning a dual damascene structure includes forming a first conductive layer in a substrate. A dielectric layer is formed over the substrate. A dual damascene opening is formed in the dielectric layer to expose the first conductive layer. A H2O2 based aqueous solution is used to remove polymer residues in the dual damascene opening. A temperature of the H2O2 based aqueous solution is controlled so that the first conductive layer is not corroded. A diluted HF solution or a diluted HF and HCl solution is used to remove the polymer residues. A second conductive layer is formed over the substrate to fill the dual damascene opening. A chemical mechanical polishing process is performed with the dielectric layer serving as a polishing stop to remove the second conductive layer outside the dual damascene opening. A H2O2 based aqueous solution is used to clean the hydrocarbon particulates from the chemical mechanically polishing step.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: October 21, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Chan-Lon Yang, Sun-Chieh Chien
  • Patent number: 6613655
    Abstract: A method of fabricating a system on a chip device. On a substrate having a memory cell region and a peripheral circuit region a gate oxide layer and a polysilicon layer are formed. The peripheral circuit region can further be divided into a logic device region and a hybrid circuit region. A dielectric layer is formed on the peripheral circuit region. A cap layer and a conductive layer are further formed on the polysilicon layer in the memory cell region and on the dielectric layer in the peripheral circuit region. Using the dielectric layer in the peripheral circuit region and the gate oxide layer in the memory cell region as etch stop, the cap layer and the conductive layer in the peripheral circuit region, and the cap layer, the conductive layer and the polysilicon layer are patterned. As a result, at least a gate and a top electrode are formed in the memory cell region and the hybrid circuit region, respectively.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: September 2, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Publication number: 20030100171
    Abstract: A method of fabricating a system on a chip device. On a substrate having a memory cell region and a peripheral circuit region a gate oxide layer and a polysilicon layer are formed. The peripheral circuit region can further be divided into a logic device region and a hybrid circuit region. A dielectric layer is formed on the peripheral circuit region. A cap layer and a conductive layer are further formed on the polysilicon layer in the memory cell region and on the dielectric layer in the peripheral circuit region. Using the dielectric layer in the peripheral circuit region and the gate oxide layer in the memory cell region as etch stop, the cap layer and the conductive layer in the peripheral circuit region, and the cap layer, the conductive layer and the polysilicon layer are patterned. As a result, at least a gate and a top electrode are formed in the memory cell region and the hybrid circuit region, respectively.
    Type: Application
    Filed: January 16, 2002
    Publication date: May 29, 2003
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6559059
    Abstract: The present invention provides a method of manufacturing a MOS transistor of an embedded memory. The method of the present invention involves first defining a memory array area and a periphery circuit region on the surface of the semiconductor wafer and to deposit a gate oxide layer, an undoped polysilicon layer and a dielectric layer, respectively. Next, the undoped polysilicon layer in the memory array area is implanted to form a doped polysilicon layer followed by the removal of the dielectric layer in the memory array area. Thereafter, a metallic silicide layer and a passivation layer are formed, respectively, on the surface of the semiconductor wafer. The passivation layer, the metallic silicide layer and the doped polysilicon layer are then etched to form a plurality of gates in the memory array area. Next, the passivation layer, the metallic silicide layer and the dielectric layer in the periphery circuit region are removed.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: May 6, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6509216
    Abstract: A structure of memory device with thin film transistor is proposed. The structure of the memory device includes a substrate. The substrate has shallow trench isolation structures, a thin film transistor, a memory cell transistor, a memory peripheral transistor, and logic circuit transistor. The shallow trench isolation structures are located in the memory cell region, the logic circuit region, and also on the memory peripheral region to isolate the memory peripheral region from the memory cell region and the logic circuit region. The thin film transistor with a thin film substrate is located above the shallow trench isolation structure at the logic circuit region. A method for fabricating the memory device with thin film transistor is also proposed, where a thin film conductive layer is formed over the substrate at the logic circuit region to serve as the thin film transistor substrate.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: January 21, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6509223
    Abstract: The present invention provides a method for forming an embedded memory MOS. The method involves first forming a first dielectric layer and an undoped polysilicon layer, respectively, on the surface of the semiconductor wafer with a defined memory array area and a periphery circuits region. Then, the undoped polysilicon layer in the memory array area is doped to become a doped polysilicon layer, followed by the formation of a protective layer on the surface of the semiconductor wafer. Thereafter, a first photolithographic and etching process(PEP) is used to etch the protective layer and the doped polysilicon layer in the memory array area to form a plurality of gates, and to form lightly doped drains(LDD) adjacent to each gate. A silicon nitride layer and a second dielectric layer are formed, followed by their removal in the periphery circuits region.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: January 21, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6509235
    Abstract: The present invention provides a method for forming an embedded memory MOS. The method involves first forming a dielectric layer and an undoped polysilicon layer, respectively, on the surface of the semiconductor wafer with a defined memory array area and a periphery circuits region. Then, the undoped polysilicon layer in the memory array area is doped to become a doped polysilicon layer. Thereafter, a protective layer is formed on the surface of the semiconductor wafer, followed by a first photolithographic and etching process (PEP) to define a plurality of gate patterns in the protective layer in the memory array area. Then, a second PEP is applied to etch the undoped polysilicon layer in the periphery circuits region and the doped polysilicon layer in the memory array area to simultaneously form a gate of each MOS in the periphery circuits region and the memory array area.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: January 21, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Publication number: 20020182786
    Abstract: A structure of memory device with thin film transistor is proposed. The structure of the memory device includes a substrate. The substrate has shallow trench isolation structures, a thin film transistor, a memory cell transistor, a memory peripheral transistor, and logic circuit transistor. The shallow trench isolation structures are located in the memory cell region, the logic circuit region, and also on the memory peripheral region to isolate the memory peripheral region from the memory cell region and the logic circuit region. The thin film transistor with a thin film substrate is located above the shallow trench isolation structure at the logic circuit region. A method for fabricating the memory device with thin film transistor is also proposed, where a thin film conductive layer is formed over the substrate at the logic circuit region to serve as the thin film transistor substrate.
    Type: Application
    Filed: July 11, 2002
    Publication date: December 5, 2002
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6468919
    Abstract: The present invention provides a method to make a local interconnect in an embedded memory. The method first involves defining both a memory array area and a periphery circuit area on the surface of a semiconductor wafer. Then, a plurality of gates and lightly doped drains (LDD) are separately formed in the memory array area and in the periphery circuit area. A silicon nitride layer and a dielectric layer are then formed, respectively, on the surface of the semiconductor wafer and on each gate. Next, a plurality of landing via holes and local interconnect holes are separately formed in the dielectric layer in the memory array area and in the periphery circuit area, followed by the filling of an electrical conducting layer in each hole to simultaneously form a landing via and local interconnect. Then, the dielectric layer and a portion of the silicon nitride layer in the periphery circuit area are removed to form a spacer on either side of each gate in the periphery circuit area.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 22, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6468838
    Abstract: The present invention provides a method for manufacturing a MOS transistor of an embedded memory on the surface of semiconductor wafer. The method of present invention is first to define a memory array area and a periphery circuit region on the surface of the semiconductor wafer and to depose a dielectric layer, a undoped polysilicon layer, a silicide layer, a doped polysilicon layer, a protection layer and a photoresist layer sequentially. Next, a plurality of gate patterns on the memory array area is defined and the protection layer is etched to the surface of the doped polysilicon layer. Then a plurality of gate patterns on the periphery circuit region is defined in and the doped polysilicon layer, the silicide layer and the undoped polysilicon layer are etched to the surface of the dielectric layer so as to form gates of each MOS transistors in the memory array area and periphery circuit region. Finally a spacer and source and drain region are formed around each gate.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: October 22, 2002
    Assignee: United Microelectronic Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Publication number: 20020148487
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Application
    Filed: April 24, 2001
    Publication date: October 17, 2002
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6465364
    Abstract: The present invention provides a method for the formation of contact plugs of an embedded memory. The method first forms a plurality of MOS transistors on a defined memory array region and periphery circuit region of the semiconductor wafer. Then, a first dielectric layer is formed on the memory array region, and plurality of landing pads is formed in the first dielectric layer. Next, both a stop layer and a second dielectric layer are formed, respectively, on the surface of semiconductor wafer. A PEP process is then used to form a plurality of contact plug holes in the second dielectric layer in both the memory array region and the periphery circuit region. Finally, a conductive layer is filled into each hole to form in-situ each contact plug in both the memory array region and the periphery circuit region.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 15, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo
  • Patent number: 6461959
    Abstract: A semiconductor wafer is provided having both a memory array region and a periphery circuit region. A plurality of gate and LDD are formed in the memory array region. Next, a silicon nitride layer and a second dielectric layer are formed on the surface of the semiconductor wafer, and each contact plug is also formed in the second dielectric layer of the memory array region. The second dielectric layer and the silicon nitride layer in the periphery circuit region are then removed, followed by forming each gate, LDD and spacer in the periphery circuit region by way of a photo-etching-process(PEP), ion implantation, and a deposition process. Finally, a source and drain are formed adjacent to each gate in the periphery circuit region. A self-aligned silicide (salicide) process is performed to form a silicide layer on the surface of each contact plug in the memory array region and on the surface of each gate, source and drain in the periphery circuit region.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: October 8, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Sun-Chieh Chien, Chien-Li Kuo