Patents by Inventor Tae-Hoon Yang

Tae-Hoon Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110169009
    Abstract: In an organic light emitting diode (OLED) display and a manufacturing method thereof, the OLED display includes a substrate main body; an insulation layer pattern formed on the substrate main body, and including a first thickness layer and a second thickness layer thinner than the first thickness layer; a metal catalyst that is scattered on the first thickness layer of the insulation layer pattern; and a polycrystalline semiconductor layer formed on the insulation layer pattern, and divided into a first crystal area corresponding to the first thickness layer and to a portion of the second thickness layer adjacent to the first thickness layer and a second crystal area corresponding to the remaining part of the second thickness layer. The first crystal area of the polycrystalline semiconductor layer is crystallized through the metal catalyst, and the second crystal area of the polycrystalline semiconductor layer is solid phase crystallized.
    Type: Application
    Filed: October 21, 2010
    Publication date: July 14, 2011
    Applicant: Samsung Mobile Display Co. Ltd.
    Inventors: Won-Kyu Lee, Tae-Hoon Yang, Bo-Kyung Choi, Byoung-Kwon Choo, Sang-Ho Moon, Kyu-Sik Cho, Yong-Hwan Park, Joon-Hoo Choi, Min-Chul Shin, Yun-Gyu Lee
  • Publication number: 20110120859
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Publication number: 20110121309
    Abstract: A method of fabricating an organic light emitting diode (OLED) display device having a thin film transistor including a polysilicon layer. The method of fabricating a polysilicon layer includes forming a buffer layer on a substrate, forming a metal catalyst layer on the buffer layer, diffusing a metal catalyst into the metal catalyst layer to the buffer layer, removing the metal catalyst layer, forming an amorphous silicon layer on the buffer layer, and annealing the substrate to crystallize the amorphous silicon layer into a polysilicon layer. The thin film transistor includes a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate insulating layer disposed above the substrate and on the semiconductor layer, a gate electrode disposed on the gate insulating layer, a source electrode and a drain electrode both electrically connected to the semiconductor layer, and a metal silicide disposed between the buffer layer and the semiconductor layer.
    Type: Application
    Filed: September 24, 2010
    Publication date: May 26, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Dong-Hyun LEE, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Yun-Mo Chung, Byoung-Keon Park, Kil-Won Lee, Jong-Ryuk Park, Bo-Kyung Choi, Byung-Soo So
  • Publication number: 20110114961
    Abstract: A method of forming a polycrystalline silicon layer, a thin film transistor (TFT), an organic light emitting diode (OLED) display device having the same, and methods of fabricating the same. The method of forming a polycrystalline silicon layer includes providing a substrate, forming a buffer layer on the substrate, forming an amorphous silicon layer on the buffer layer, forming a groove in the amorphous silicon layer, forming a capping layer on the amorphous silicon layer, forming a metal catalyst layer on the capping layer, and annealing the substrate and crystallizing the amorphous silicon layer into a polycrystalline silicon layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: May 19, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Dong-Hyun LEE, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Maxim Lisachenko, Byoung-Keon Park, Kil-Won Lee, Jae-Wan Jung
  • Patent number: 7943929
    Abstract: A thin film transistor and method of fabricating the same are provided. The thin film transistor includes: a metal catalyst layer formed on a substrate, and a first capping layer and a second capping layer pattern sequentially formed on the metal catalyst layer. The method includes: forming a first capping layer on a metal catalyst layer; forming and patterning a second capping layer on the first capping layer; forming an amorphous silicon layer on the patterned second capping layer; diffusing the metal catalyst; and crystallizing the amorphous silicon layer to form a polysilicon layer. The crystallization catalyst diffuses at a uniform low concentration to control a position of a seed formed of the catalyst such that a channel region in the polysilicon layer is close to a single crystal. Therefore, the characteristics of the thin film transistor device may be improved and uniformed.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: May 17, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jin-Wook Seo, Ki-Yong Lee, Tae-Hoon Yang, Byoung-Keon Park
  • Publication number: 20110108840
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are disclosed.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Won-Kyu Lee, Kyu-Sik Cho, Tae-Hoon Yang, Byoung-Kwon Choo, Sang-Ho Moon, Bo-Kyung Choi, Yong-Hwan Park, Joon-Hoo Choi, Min-Chul Shin, Yun-Gyu Lee
  • Publication number: 20110100973
    Abstract: An apparatus for thermally processing a plurality of substrates including a process chamber into which a boat having a plurality of substrates stacked thereon is loaded, and a heater chamber separate from the process chamber and having a plurality of heaters to apply heat to the process chamber. Here, the heaters are installed to correspond to all sides of the plurality of substrates. Therefore, it is possible to minimize a temperature distribution in the process chamber and uniformly supply heat to the entire region of the plurality of substrates.
    Type: Application
    Filed: February 26, 2010
    Publication date: May 5, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Heung-Yeol NA, Min-Jae Jeong, Jong-Won Hong, Eu-Gene Kang, Seok-Rak Chang, Ki-Yong Lee, Jin-Wook Seo, Tae-Hoon Yang, Yun-Mo Chung, Byung-Soo So, Byoung-Keon Park, Dong-Hyun Lee, Kil-Won Lee, Won-Bong Baek, Jong-Ryuk Park, Bo-Kyung Choi, Ivan Maidanchuk, Jae-Wan Jung
  • Patent number: 7935586
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no gram boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: May 3, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Publication number: 20110095296
    Abstract: A thin film transistor (TFT) and an organic light emitting display device having the same are disclosed. In one embodiment, a TFT includes a gate electrode formed on a substrate. A gate insulating layer is formed on the substrate having the gate electrode. An active layer is formed on the gate insulating layer. A source electrode is formed over the active layer. A drain electrode is formed to substantially surround at least three surfaces of the source electrode on the active layer.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Applicant: Samsung Mobile Display Co. Ltd.
    Inventors: Byoung-Kwon Choo, Kyu-Sik Cho, Won-Kyu Lee, Yong-Hwan Park, Sang-Ho Moon, Tae-Hoon Yang, Joon-Hoo Choi, Min-Chul Shin, Bo-Kyung Choi, Yun-Gyu Lee
  • Publication number: 20110083960
    Abstract: A sputtering apparatus that is capable of uniformly depositing an ultra-low concentration metal catalyst on a substrate having an amorphous silicon layer in order to crystallize the amorphous silicon layer. The sputtering apparatus includes a process chamber, a metal target located inside the process chamber, a substrate holder located opposite the metal target, and a vacuum pump connected with an exhaust pipe of the process chamber. An area of the metal target is more than 1.3 times an area of a substrate placed on the substrate holder.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: TAE-HOON YANG, KI-YONG LEE, JIN-WOOK SEO, BYOUNG-KEON PARK, YUN-MO CHUNG, DONG-HYUN LEE, KIL-WON LEE, JAE-WAN JUNG, JONG-RYUK PARK, BO-KYUNG CHOI, WON-BONG BAEK, BYUNG-SOO SO, JONG-WON HONG, MIN-JAE JEONG, HEUNG-YEOL NA, IVAN MAIDANCHUK, EU-GENE KANG, SEOK-RAK CHANG
  • Publication number: 20110041767
    Abstract: A metal capturing apparatus and an atomic layer deposition apparatus, which are capable of discharging an exhaust gas from a process chamber, in which a metal atomic layer is deposited on a substrate using a reaction gas containing a metal catalyst, without a scrubber, and easily reusing the metal catalyst contained in the exhaust gas. The metal capturing apparatus includes a capturing chamber having a capturing space, a capturing plate disposed at one side of the capturing chamber and partially inserted into the capturing chamber, a refrigerant source feeding a refrigerant cooling the capturing plate, and an attachment unit attaching the capturing plate to the capturing chamber. The atomic layer deposition apparatus includes a process chamber, a vacuum pump connected to an exhaust port of the process chamber, and a metal capturing apparatus disposed between the process chamber and the vacuum pump.
    Type: Application
    Filed: February 26, 2010
    Publication date: February 24, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Heung-Yeol Na, Ki-Yong Lee, Jin-Wook Seo, Min-Jae Jeong, Jong-Won Hong, Eu-Gene Kang, Seok-Rak Chang, Yun-Mo Chung, Tae-Hoon Yang, Byoung-Keon Park, Dong-Hyun Lee, Kil-Won Lee, Jong-Ryuk Park, Bo-Kyung Choi, Jae-Wan Jung, Byung-Soo So, Won-Bong Baek, Ivan Maidanchuk
  • Publication number: 20110020990
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no gram boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Application
    Filed: August 9, 2010
    Publication date: January 27, 2011
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Publication number: 20110014756
    Abstract: A thin film transistor includes: a substrate; a semiconductor layer disposed on the substrate, and including a channel region, source and drain regions, and edge regions having a first impurity formed at edges of the source and drain regions, and optionally, in the channel region; a gate insulating layer insulating the semiconductor layer; a gate electrode insulated from the semiconductor layer by the gate insulating layer; and source and drain electrodes electrically connected to the semiconductor layer.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: Samsung Mobile Display Co., Ltd
    Inventors: Byoung-Keon PARK, Tae-hoon Yang, Jin-Wook Seo, Sei-Hwan Jung, Ki-Yong Lee
  • Publication number: 20110014755
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon YANG, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
  • Publication number: 20110008540
    Abstract: A deposition apparatus, and a canister for the deposition apparatus capable of maintaining a predetermined amount of source material contained in a reactive gas supplied to a deposition chamber when the source material is deposited on a substrate by atomic layer deposition includes a main body, a source storage configured to store a source material, a heater disposed outside the main body, and a first feed controller configured to control the source material supplied to the main body from the source storage.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Heung-Yeol Na, Ki-Yong Lee, Jin-Wook Seo, Min-Jae Jeong, Jong-Won Hong, Eu-Gene Kang, Seok-Rak Chang, Tae-Hoon Yang, Yun-Mo Chung, Byung-Soo So, Byoung-Keon Park, Ivan Maidanchuk, Dong-Hyun Lee, Kil-Won Lee, Won-Bong Baek, Jong-Ryuk Park, Bo-Kyung Choi, Jae-Wan Jung
  • Patent number: 7863621
    Abstract: A thin film transistor includes a semiconductor layer formed on a polycrystalline silicon layer crystallized by a super grain silicon (SGS) crystallization method. The thin film transistor is patterned such that the semiconductor layer does not include a seed or a grain boundary created when forming the semiconductor layer on the polycrystalline silicon layer.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: January 4, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7862334
    Abstract: A heat treatment apparatus and a heat treatment method using the same are disclosed. In the method, a support plate on which a device substrate is mounted is loaded into the heat treatment apparatus using a transfer unit in an in-line manner, and the device substrate mounted on the support plate is heat-treated using the heat treatment apparatus.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: January 4, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7838885
    Abstract: A thin film transistor (TFT), a method of fabricating the TFT, and a display device including the TFT are provided. The TFT includes a semiconductor layer having a channel region and source and drain regions is crystallized using a crystallization-inducing metal. The crystallization-inducing metal is gettered by either a metal other than the crystallization-inducing metal or a metal silicide of a metal other than the crystallization-inducing metal. A length and width of the channel region of the semiconductor layer and a leakage current of the semiconductor layer satisfy the following equation: Ioff/W=3.4E-15L2+2.4E-12L+c, wherein Ioff (A) is the leakage current of the semiconductor layer, W (mm) is the width of the channel region, L (?m) is the length of the channel region, and ā€œcā€ is a constant ranging from 2.5E-13 to 6.8E-13.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 23, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7838352
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no grain boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: November 23, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7825476
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee