Patents by Inventor Takayuki Goto

Takayuki Goto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11628835
    Abstract: A vehicle control system includes a first unit configured to generate a target trajectory based on a travel plan of the vehicle, and a second unit configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the first unit transmits automated driving information to the second unit. The system includes a memory device in which driving environment information is stored, and a processor for controlling a travel control amount. During the automated driving, the processor executes preventive safety control for intervening in the travel control amount so as to prevent or avoid a collision between the vehicle and an obstacle based on the driving environment information. In the preventive safety control, the processor changes an intervention degree to the travel control amount based on the automated driving information.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 18, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Patent number: 11631801
    Abstract: A multilayer piezoelectric ceramic is constituted by: piezoelectric ceramic layers which do not contain lead as a constituent element, have a perovskite compound expressed by the composition formula LixNayK1?x?yNbO3 (where 0.02<x?0.1, 0.02<x+y?1) as the primary component, and contain 0.2 to 3.0 mol of Li relative to 100 mol of the primary component; and internal electrode layers which are constituted by a metal that contains silver by 80 percent by mass or more; wherein the multilayer piezoelectric ceramic is such that Li compounds other than the primary component are localized therein. The multilayer piezoelectric element can offer excellent insulating property.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 18, 2023
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Tomohiro Harada, Takayuki Goto, Ryo Ito, Hiroyuki Shimizu, Sumiaki Kishimoto
  • Patent number: 11618473
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. Even when the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the first target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the first target trajectory than to the second target trajectory.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 4, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Goto, Yoshinori Watanabe, Nobuhide Kamata, Kazuyuki Fujita, Masahiro Harada
  • Patent number: 11548530
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the second target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the second target trajectory than to the first target trajectory.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: January 10, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Goto, Yoshinori Watanabe, Nobuhide Kamata, Kazuyuki Fujita, Masahiro Harada
  • Patent number: 11548503
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, the vehicle travel control device determines whether or not a cancellation condition is satisfied. When the cancellation condition is satisfied, the vehicle travel control device cancels both the first target trajectory and the second target trajectory, and decelerates the vehicle.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: January 10, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Goto, Yoshinori Watanabe, Nobuhide Kamata, Kazuyuki Fujita, Masahiro Harada
  • Patent number: 11498536
    Abstract: A system for a vehicle and a trailer connected to the vehicle is provided. The system includes a trailer brake output circuit configured to output a trailer brake output signal, and an electronic control unit. The electronic control unit is configured to determine whether a value of a yaw rate of the trailer connected to the vehicle becomes greater than a threshold value, change a yaw rate oscillation counter in response to determining that the value of the yaw rate of the trailer becomes greater than the threshold value, instruct the trailer brake output circuit to output the trailer brake output signal to the trailer in response to the yaw rate oscillation becoming a first value, and activate trailer sway control in response to the yaw rate oscillation becoming a second value. The second value is greater than the first value.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 15, 2022
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Adam VanAntwerp, Corey Zwegers, Stephen Robertson, Takayuki Goto, Yuichi Shimizu
  • Patent number: 11393972
    Abstract: A multi-layer piezoelectric ceramic component includes: a piezoelectric ceramic body having a cuboid shape, having upper and lower surfaces facing in a thickness direction, first and second end surfaces facing in a length direction, and a pair of side surfaces facing in a width direction, and including first and second regions; first internal electrodes in the first region; second internal electrodes in the second region; third internal electrodes in the first and second regions; a first terminal electrode formed on the first end surface and electrically connected to the first internal electrodes; a second terminal electrode formed on the first end surface and electrically connected to the second internal electrodes; a third terminal electrode formed on the second end surface and electrically connected to the third internal electrodes; a first surface electrode formed on the upper surface; and a second surface electrode formed on the lower surface.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: July 19, 2022
    Assignee: TAIYO YUDEN CO., LTD
    Inventors: Tomohiro Harada, Takayuki Goto, Hiroyuki Shimizu, Sumiaki Kishimoto
  • Patent number: 11362261
    Abstract: A multi-layer piezoelectric ceramic component includes: a piezoelectric ceramic body having a cuboid shape having upper and lower surfaces facing in a thickness direction, first and second end surfaces facing in a length direction, and a pair of side surfaces facing in a width direction; first internal electrodes formed in the piezoelectric ceramic body and drawn to the first end surface; second internal electrodes formed in the piezoelectric ceramic body and drawn to the second end surface; a first terminal electrode formed on the first end surface; and a second terminal electrode formed on the second end surface, the first and second internal electrodes each having a width equal to a distance between the pair of side surfaces, at least one of the pair of side surfaces including a groove extending in non-parallel with the length direction.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: June 14, 2022
    Assignee: TAIYO YUDEN CO., LTD
    Inventors: Takayuki Goto, Hiroyuki Shimizu, Sumiaki Kishimoto, Yukihiro Konishi
  • Patent number: 11309481
    Abstract: A multi-layer piezoelectric ceramic component includes: a piezoelectric ceramic body having a cuboid shape, having upper and lower surfaces facing in a thickness direction, first and second end surfaces facing in a length direction, and a pair of side surfaces facing in a width direction, and including first and second regions; first internal electrodes in the first region; second internal electrodes in the second region; third internal electrodes in the first and second regions; a first terminal electrode formed on the first end surface and electrically connected to the first internal electrodes; a second terminal electrode formed on the first end surface and electrically connected to the second internal electrodes; and a third terminal electrode formed on the second end surface and electrically connected to the third internal electrodes, the first, second, and third internal electrodes each having a width equal to a distance between the pair of side surfaces.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 19, 2022
    Assignee: TAIYO YUDEN CO., LTD
    Inventors: Sumiaki Kishimoto, Hiroyuki Shimizu, Tomohiro Harada, Takayuki Goto, Yukihiro Konishi
  • Publication number: 20210376771
    Abstract: A driving device generates a driving signal and outputs the driving signal to a piezoelectric element, the driving signal having a waveform obtained by using, as a first modulated wave, a first low-frequency wave having a frequency of 1 Hz or more and less than 100 Hz, using, as a second modulated wave, a waveform obtained by modulating an amplitude of a second low-frequency wave having a frequency of 100 Hz or more and 300 Hz or less with the first modulated wave, and modulating a high-frequency wave having a frequency of 20 kHz or more and 100 kHz or less with the second modulated wave.
    Type: Application
    Filed: March 19, 2021
    Publication date: December 2, 2021
    Inventors: Shigeo ISHII, Sumiaki KISHIMOTO, Hiroyuki SHIMIZU, Takayuki GOTO, Yuichi NAMIKAWA
  • Publication number: 20210305490
    Abstract: A multilayer piezoelectric element using an alkaline niobate-based piezoelectric ceramic, which can inhibit its reliability from dropping while lowering production cost, is characterized by forming internal electrodes (10) with a metal whose silver content is 80 percent by mass or higher, and also constituting piezoelectric ceramic layers (40) with a piezoelectric ceramic whose primary component is an alkaline niobate having a perovskite structure and which also contains a lithium manganate.
    Type: Application
    Filed: March 15, 2021
    Publication date: September 30, 2021
    Inventors: Ryo ITO, Takayuki GOTO
  • Publication number: 20210162458
    Abstract: Provided is a driving apparatus that sets a signal wave in a low-frequency region having a frequency of 10 Hz or more and 250 Hz or less as a modulating wave and outputs to a piezoelectric actuator a driving signal having a waveform obtained by modulating an amplitude of a sine wave in a high-frequency region having a frequency of 20 kHz or more and 40 kHz or less with the modulating wave.
    Type: Application
    Filed: November 19, 2020
    Publication date: June 3, 2021
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Shigeo ISHII, Takayuki GOTO, Sumiaki KISHIMOTO, Hiroyuki SHIMIZU, Yuichi NAMIKAWA
  • Publication number: 20210146956
    Abstract: A vehicle traveling control system according to the example in the present disclosure communicates with an automatic operation control system which drafts a traveling plan of the vehicle, and performs an automatic traveling control for automatically running the vehicle along the traveling plan received from the automatic operation control system. The vehicle traveling control system predicts a risk based on information about surrounding environment of the vehicle, and performs, when the risk is predicted, a risk avoidance control to intervene in the automatic traveling control in order to avoid the risk. When the risk avoidance control is executed, the vehicle traveling control system transmits information on the risk avoidance control to the automatic operation control system.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 20, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107517
    Abstract: A vehicle control system generates a first target trajectory, which is a target trajectory for an automated driving of a vehicle, and executes vehicle travel control based on the first target trajectory. The vehicle control system generates a second target trajectory which is a target trajectory which does not conflict with a restrict condition, when the travel based on the first target trajectory conflicts with a safety restrict condition, and executes travel assist control by using the second target trajectory. The vehicle control system judges whether or not a resurgence condition is satisfied by using the first target trajectory that is generated during the execution of the travel assist control. If it is judged that the resurgence condition is satisfied, the vehicle control system returns to the execution of the vehicle travel control from that of the travel assist control.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Yoshinori Watanabe, Kazuyuki Fujita, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107516
    Abstract: A vehicle control system generates at least one primary candidate of a target trajectory for an automated driving of a vehicle and executes a primary evaluation. An evaluation index of the primary evaluation includes a travel safety level of a travel to follow the primary candidate. The primary candidate having highest travel safety level is selected as at least one strong candidate of the target trajectory. If only one is selected as the strong candidate, the vehicle control system determines the selected strong candidate as a finalist candidate of the target trajectory. If two or more strong candidates are selected, the vehicle control system executes a secondary evaluation for the strong candidates to determine the finalist candidate. An additional evaluation index is used in the secondary evaluation.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107478
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, the vehicle travel control device determines whether or not a cancellation condition is satisfied. When the cancellation condition is satisfied, the vehicle travel control device cancels both the first target trajectory and the second target trajectory, and decelerates the vehicle.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki GOTO, Yoshinori WATANABE, Nobuhide KAMATA, Kazuyuki FUJITA, Masahiro HARADA
  • Publication number: 20210107521
    Abstract: The vehicle control system includes a first unit configured to generate a target trajectory for the automated driving, and a second unit configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the second unit is configured to control a travel control amount of the vehicle travel control, acquire driving environment information, and perform preventive safety control for intervening in the travel control amount so as to prevent or avoid a collision between the vehicle and an obstacle based on the driving environment information. In the preventive safety control, the second unit is configured to acquire a driving involvement degree indicating a degree of involvement of a person in driving of the vehicle, and to change an intervention degree to the travel control amount in the preventive safety control based on the driving involvement degree.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107528
    Abstract: A vehicle control system includes a first unit configured to generate a target trajectory based on a travel plan of the vehicle, and a second unit configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the first unit transmits automated driving information to the second unit. The system includes a memory device in which driving environment information is stored, and a processor for controlling a travel control amount. During the automated driving, the processor executes preventive safety control for intervening in the travel control amount so as to prevent or avoid a collision between the vehicle and an obstacle based on the driving environment information. In the preventive safety control, the processor changes an intervention degree to the travel control amount based on the automated driving information.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107513
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. Even when the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the first target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the first target trajectory than to the second target trajectory.
    Type: Application
    Filed: September 14, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki GOTO, Yoshinori WATANABE, Nobuhide KAMATA, Kazuyuki FUJITA, Masahiro HARADA
  • Publication number: 20210107522
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the second target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the second target trajectory than to the first target trajectory.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Goto, Yoshinori Watanabe, Nobuhide Kamata, Kazuyuki Fujita, Masahiro Harada