Patents by Inventor Taylor R. Efland

Taylor R. Efland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6753575
    Abstract: A tank-isolated drain extended power device (50, 60, 70, 80) having an added laterally extending heavily doped p-type region (56, 62, 72) in combination with a p-type Dwell (32) which reduces minority carrier buildup. The p-doped regions are defined in a P-epi layer surrounded by a buried NBL region (14) connected with a deep low resistance drain region (16) forming a guardring. This additional laterally extending p-doped region (56,62,72) reduces minority carrier build up such that recovery time is significantly reduced, and power loss is also significantly reduced due to reduced collection time of the minority carriers. The device may be formed as an LDMOS device.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: June 22, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Chin-Yu Tsai
  • Patent number: 6729886
    Abstract: A tank-isolated drain extended power device (50, 60, 70, 80) having an added laterally extending heavily doped p-type region (56, 62, 72) in combination with a p-type Dwell (32) which reduces minority carrier buildup. The p-doped regions are defined in a P-epi layer surrounded by a buried NBL region (14) connected with a deep low resistance drain region (16) forming a guardring. This additional laterally extending p-doped region (56,62,72) reduces minority carrier build up such that recovery time is significantly reduced, and power loss is also significantly reduced due to reduced collection time of the minority carriers. The device may be formed as an LDMOS device.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: May 4, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Chin-Yu Tsai
  • Publication number: 20040079991
    Abstract: The concept of the present invention describes a semiconductor device with a junction 504 between a lightly doped region 501 and a heavily doped region 502, wherein the junction has an elongated portion 504a and curved portions 504b. The doping concentration of the lightly doped region is configured so that it exhibits higher resistivity in the proximity 510 of the curved portion by an amount suitable to lower the electric field strength during device operation and thus to offset the increased field strength caused by the curved portion. As a consequence, the device breakdown voltage in the curved junction portion becomes equal to or greater than the breakdown voltage in the linear portion.
    Type: Application
    Filed: November 22, 2002
    Publication date: April 29, 2004
    Inventors: John Lin, Philip L. Hower, Taylor R. Efland, Sameer Pendharkar, Vladimir Bolkhovsky
  • Patent number: 6710427
    Abstract: A distributed power device (100) including a plurality of tank regions (90) separated from one another by a deep n-type region (16), and having formed in each tank region a plurality of transistors (50). The plurality of transistors (50) in each tank region are interconnected to transistors in other tank regions to form a large power FET, whereby the deep n-type regions isolate the tank regions from one another. A first parasitic diode (D5) is defined from each tank region to a buried layer, and a second parasitic diode (D4) is defined between the buried layer and a substrate. The deep n-type regions distribute the first and second parasitic diodes with respect to the plurality of tank regions, preferably comprised of a P-epi tank. The deep n-type regions also distribute the resistance of an NBL layer (14) formed under the tank regions.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: March 23, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Chin-Yu Tsai, David D. Briggs, Dale Skelton
  • Patent number: 6709900
    Abstract: A power integrated circuit architecture (10) having a high side transistor (100) interposed between a control circuit (152) and a low side transistor (100) to reduce the effects of the low side transistor on the operation of the control circuit. The low side transistor has a heavily p-doped region (56) designed to reduce minority carrier lifetime and improve minority carrier collection to reduce the minority carriers from disturbing the control circuit. The low side transistor has a guardring (16) tied to an analog ground, whereby the control circuit is tied to a digital ground, such that the collection of the minority carriers into the analog ground does not disturb the operation of the control circuit. The low side transistor is comprised of multiple transistor arrays (90) partitioned by at least one deep n-type region (16), which deep n-type region forms a guardring about the respective transistor array.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: March 23, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Dale Skelton, David D. Briggs, Chin-Yu Tsai
  • Patent number: 6683380
    Abstract: An integrated circuit device (10) with a bonding surface (12) directly over its active circuitry, and a method of making such integrated circuits (FIGS. 2A-2E). To make the bonding surface (12), a wafer (20) is provided with vias (24) to its metallization layer (21) and then coated with a seed metal layer (25). A plating pattern (26) is formed on the wafer (20), exposing portions of the seed metal layer (25) and blocking the rest of the seed metal layer (25). These exposed portions are plated with successive metal layers (27, 28, 29), thereby forming a bonding surface (12) having a number of layered stacks (200) that fill the vias (24). The plating pattern and the nonplated portions of the seed metal layer (25) are then removed.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 27, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Donald C. Abbott, Walter Bucksch, Marco Corsi, Chi-Cheong Shen, John P. Erdeljac, Louis N. Hutter, Quang X. Mai, Konrad Wagensohner, Charles E. Williams, Milton L. Buschbom
  • Patent number: 6680226
    Abstract: High performance digital transistors (140) and analog transistors (144, 146) are formed at the same time. The digital transistors (140) include first pocket regions (134) for optimum performance. These pocket regions (134) are masked from at least the drain side of the analog transistors (144, 146) to provide a flat channel doping profile on the drain side. Second pocket regions (200) may be formed in the analog transistors. The flat channel doping profile provides high early voltage and higher gain.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: January 20, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Alec J. Morton, Chin-Yu Tsai
  • Publication number: 20040004282
    Abstract: An integrated circuit (IC) chip has a metal network of electrical power distribution lines which have a thermal conductance at least an order of magnitude greater than underlying thin film electrical interconnects. These lines are deposited on the surface of the chip (FIG. 2), located directly over active IC components, and electrically and thermally connected vertically to selected active components below the lines. Electrical conductors are operable to connect the lines to an outside source, and additional electrically non-functional conductors are distributed on the lines, operable to steepen the thermal gradient for thermal flux away from said active components and lines.
    Type: Application
    Filed: June 25, 2003
    Publication date: January 8, 2004
    Inventor: Taylor R. Efland
  • Publication number: 20030228732
    Abstract: A tank-isolated drain extended power device (50, 60, 70, 80) having an added laterally extending heavily doped p-type region (56, 62, 72) in combination with a p-type Dwell (32) which reduces minority carrier buildup. The p-doped regions are defined in a P-epi layer surrounded by a buried NBL region (14) connected with a deep low resistance drain region (16) forming a guardring. This additional laterally extending p-doped region (56,62,72) reduces minority carrier build up such that recovery time is significantly reduced, and power loss is also significantly reduced due to reduced collection time of the minority carriers. The device may be formed as an LDMOS device.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, Chin-Yu Tsai
  • Publication number: 20030228729
    Abstract: A power integrated circuit architecture (10) having a high side transistor (100) interposed between a control circuit (152) and a low side transistor (100) to reduce the effects of the low side transistor on the operation of the control circuit. The low side transistor has a heavily p-doped region (56) designed to reduce minority carrier lifetime and improve minority carrier collection to reduce the minority carriers from disturbing the control circuit. The low side transistor has a guardring (16) tied to an analog ground, whereby the control circuit is tied to a digital ground, such that the collection of the minority carriers into the analog ground does not disturb the operation of the control circuit. The low side transistor is comprised of multiple transistor arrays (90) partitioned by at least one deep n-type region (16), which deep n-type region forms a guardring about the respective transistor array.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Dale Skelton, David D. Briggs, Chin-Yu Tsai
  • Publication number: 20030228737
    Abstract: A tank-isolated drain extended power device (50, 60, 70, 80) having an added laterally extending heavily doped p-type region (56, 62, 72) in combination with a p-type Dwell (32) which reduces minority carrier buildup. The p-doped regions are defined in a P-epi layer surrounded by a buried NBL region (14) connected with a deep low resistance drain region (16) forming a guardring. This additional laterally extending p-doped region (56,62,72) reduces minority carrier build up such that recovery time is significantly reduced, and power loss is also significantly reduced due to reduced collection time of the minority carriers. The device may be formed as an LDMOS device.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, Chin-Yu Tsai
  • Publication number: 20030228730
    Abstract: An array (90) of transistors (50) formed in a p-type layer (34), and including a second heavily doped p-type region (56) laterally extending proximate the drain of each transistor to collect minority carriers of the transistors. A deep n-type region (16) is formed in the p-type layer (34) and proximate a n-type buried layer (14) together forming a guardring about the drain regions of the plurality of transistors. The array of transistors may be interconnected in parallel to form a large power FET, whereby the heavily doped second p-type region (56) reduces the minority carrier lifetime proximate the drains of the transistors. The guardring (14, 16) collects the minority carriers (T1) and is isolated from the drains of the transistors. Preferably, the transistors are formed in a P-epi tank that is isolated by the guardring. The P-epi tank is preferably formed upon a buried NBL layer, and the deep n-type region is an N+ well extending to the buried NBL layer.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Chin-Yu Tsai, Dale Skelton
  • Publication number: 20030228721
    Abstract: A power integrated circuit architecture (10) having a high side transistor (100) interposed between a control circuit (152) and a low side transistor (100) to reduce the effects of the low side transistor on the operation of the control circuit. The low side transistor has a heavily p-doped region (56) designed to reduce minority carrier lifetime and improve minority carrier collection to reduce the minority carriers from disturbing the control circuit. The low side transistor has a guardring (16) tied to an analog ground, whereby the control circuit is tied to a digital ground, such that the collection of the minority carriers into the analog ground does not disturb the operation of the control circuit. The low side transistor is comprised of multiple transistor arrays (90) partitioned by at least one deep n-type region (16), which deep n-type region forms a guardring about the respective transistor array.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Dale Skelton, David D. Briggs, Chin-Yu Tsai
  • Publication number: 20030227070
    Abstract: A distributed power device (100) including a plurality of tank regions (90) separated from one another by a deep n-type region (16), and having formed in each tank region a plurality of transistors (50). The plurality of transistors (50) in each tank region are interconnected to transistors in other tank regions to form a large power FET, whereby the deep n-type regions isolate the tank regions from one another. A first parasitic diode (D5) is defined from each tank region to a buried layer, and a second parasitic diode (D4) is defined between the buried layer and a substrate. The deep n-type regions distribute the first and second parasitic diodes with respect to the plurality of tank regions, preferably comprised of a P-epi tank. The deep n-type regions also distribute the resistance of an NBL layer (14) formed under the tank regions.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Chin-Yu Tsai, David D. Briggs, Dale Skelton
  • Patent number: 6597065
    Abstract: An integrated circuit (IC) chip has a metal network of electrical power distribution lines which have a thermal conductance at least an order of magnitude greater than underlying thin film electrical interconnects. These lines are deposited on the surface of the chip (FIG. 2), located directly over active IC components, and electrically and thermally connected vertically to selected active components below the lines. Electrical conductors are operable to connect the lines to an outside source, and additional electrically non-functional conductors are distributed on the lines, operable to steepen the thermal gradient for thermal flux away from said active components and lines.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 22, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Taylor R. Efland
  • Publication number: 20030073313
    Abstract: A transistor is formed in a semiconductor substrate. A deep n-well region is used in conjunction with a shallow n-well region. A lightly doped drain extension region is disposed between a drain region and a gate conductor. The use of the regions and against the backdrop of region provides for a very high breakdown voltage as compared to a relatively low channel resistance for the device.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 17, 2003
    Inventors: Sameer P. Pendharkar, Taylor R. Efland, William Nehrer
  • Patent number: 6531355
    Abstract: A RESURF LDMOS transistor (64) includes a RESURF region (42) that is self-aligned to a LOCOS field oxide region (44). The self-alignment produces a stable breakdown voltage BVdss by eliminating degradation associated with geometric misalignment and process tolerance variation.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: March 11, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Dan M. Mosher, Taylor R. Efland
  • Publication number: 20030036256
    Abstract: An integrated circuit device (10) with a bonding surface (12) directly over its active circuitry, and a method of making such integrated circuits (FIGS. 2A-2E). To make the bonding surface (12), a wafer (20) is provided with vias (24) to its metallization layer (21) and then coated with a seed metal layer (25). A plating pattern (26) is formed on the wafer (20), exposing portions of the seed metal layer (25) and blocking the rest of the seed metal layer (25). These exposed portions are plated with successive metal layers (27, 28, 29), thereby forming a bonding surface (12) having a number of layered stacks (200) that fill the vias (24). The plating pattern and the nonplated portions of the seed metal layer (25) are then removed.
    Type: Application
    Filed: July 10, 2002
    Publication date: February 20, 2003
    Inventors: Taylor R. Efland, Donald C. Abbott, Walter Bucksch, Marco Corsi, Chi-Cheong Shen, John P. Erdeljac, Louis N. Hutter, Quang X. Mai, Konrad Wagensohner, Charles E. Williams, Milton L. Buschbom
  • Publication number: 20030032231
    Abstract: High performance digital transistors (140) and analog transistors (144, 146) are formed at the same time. The digital transistors (140) include first pocket regions (134) for optimum performance. These pocket regions (134) are masked from at least the drain side of the analog transistors (144, 146) to provide a flat channel doping profile on the drain side. Second pocket regions (200) may be formed in the analog transistors. The flat channel doping profile provides high early voltage and higher gain.
    Type: Application
    Filed: August 29, 2002
    Publication date: February 13, 2003
    Inventors: Taylor R. Efland, Alec J. Morton, Chin-Yu Tsai
  • Patent number: 6483149
    Abstract: A RESURF LDMOS transistor (64) includes a RESURF region (42) that is self-aligned to a LOCOS field oxide region (44). The self-alignment produces a stable breakdown voltage BVdss by eliminating degradation associated with geometric misalignment and process tolerance variation.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: November 19, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Dan M. Mosher, Taylor R. Efland