Patents by Inventor Taylor R. Efland

Taylor R. Efland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6468837
    Abstract: A semiconductor device (10) comprises a reduced surface field (RESURF) implant (14). A field oxide layer (20), having a length, is formed over the RESURF implant (14). A field plate (12) extends from a near-side of the field oxide layer (20) and over at least one-half of the length of the field oxide layer (20).
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: October 22, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Taylor R. Efland
  • Patent number: 6468849
    Abstract: High performance digital transistors (140) and analog transistors (144, 146) are formed at the same time. The digital transistors (140) include first pocket regions (134) for optimum performance. These pocket regions (134) are masked from at least the drain side of the analog transistors (144, 146) to provide a flat channel doping profile on the drain side. Second pocket regions (200) may be formed in the analog transistors. The flat channel doping profile provides high early voltage and higher gain.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: October 22, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Alec J. Morton, Chin-Yu Tsai
  • Publication number: 20020109184
    Abstract: An improved n-channel integrated lateral DMOS (10) in which a buried body region (30), beneath and self-aligned to the source (18) and normal body diffusions, provides a low impedance path for holes emitted at the drain region (16). This greatly reduces secondary electron generation, and accordingly reduces the gain of the parasitic PNP bipolar device. The reduced regeneration in turn raises the critical field value, and hence the safe operating area.
    Type: Application
    Filed: December 31, 2001
    Publication date: August 15, 2002
    Applicant: Texas instruments Incorporated
    Inventors: Philip L. Hower, Taylor R. Efland
  • Patent number: 6424005
    Abstract: An LDMOS device (10, 20, 50, 60) that is made with minimal feature size fabrication methods, but overcomes potential problems of misaligned Dwells (13). The Dwell (13) is slightly overstated so that its n-type dopant is implanted past the source edge of the gate region (18), which permits the n-type region of the Dwell to diffuse under the gate region (18) an sufficient distance to eliminate misalignment effects.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: July 23, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Chin-Yu Tsai, Taylor R. Efland, Sameer Pendharkar, John P. Erdeljac, Jozef Mitros, Jeffrey P. Smith, Louis N. Hutter
  • Publication number: 20020084516
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. Furthermore, the lines are fabricated with a sheet resistance of less than 1.5 m&OHgr;/and the majority of the lines is patterned as straight lines between the vias and the conductors, respectively.
    Type: Application
    Filed: October 22, 2001
    Publication date: July 4, 2002
    Inventors: Taylor R. Efland, Milton L. Buschbom, Sameer Pendharkar
  • Patent number: 6413824
    Abstract: High performance digital transistors (140) and analog transistors (144) are formed at the same time. The digital transistors (140) include pocket regions (134) for optimum performance. These pocket regions (134) are partially or completely suppressed from at least the drain side of the analog transistors (144) to provide a flat channel doping profile on the drain side. The flat channel doping profile provides high early voltage and higher gain. The suppression is accomplished by using the HVLDD implants for the analog transistors (144).
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: July 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Amitava Chatterjee, Alec J. Morton, Mark S. Rodder, Taylor R. Efland, Chin-Yu Tsai, James R. Hellums
  • Patent number: 6395593
    Abstract: A method of minimizing parasitics in an MOS device caused by the formation of a bipolar transistor within the MOS devices and the device, primarily for a polyphase bridge circuit. For the low side device, a substrate of a first conductivity type is provided having a first buried layer of opposite conductivity type thereon. A second buried layer of the first conductivity type is formed over the first buried layer and a further layer of the first conductivity type is formed over the second buried layer. A sinker extending through the further layer to the first buried layer is formed to isolate the second buried layer and the further layer from the substrate. Formation of an MOS device in the further layer including source, drain and gate regions is completed and the sinker is connected to a source terminal of the device.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Taylor R. Efland
  • Publication number: 20020053685
    Abstract: A method of minimizing parasitics in an MOS device caused by the formation of a bipolar transistor within the MOS devices and the device, primarily for a polyphase bridge circuit. For the low side device, a substrate of a first conductivity type is provided having a first buried layer of opposite conductivity type thereon. A second buried layer of the first conductivity type is formed over the first buried layer and a further layer of the first conductivity type is formed over the second buried layer. A sinker extending through the further layer to the first buried layer is formed to isolate the second buried layer and the further layer from the substrate. Formation of an MOS device in the further layer including source, drain and gate regions is completed and the sinker is connected to a source terminal of the device.
    Type: Application
    Filed: December 26, 2001
    Publication date: May 9, 2002
    Inventors: Sameer Pendharkar, Taylor R. Efland
  • Publication number: 20020043712
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 18, 2002
    Inventor: Taylor R. Efland
  • Patent number: 6372586
    Abstract: A thick copper interconnection structure and method for an LDMOS transistor for power semiconductor devices. A large LDMOS transistor is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain. Gate regions are formed between the alternating source and drain diffusions. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form a source and a drain bus. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive copper layer.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: April 16, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Dave Cotton, Dale J. Skelton
  • Publication number: 20020011674
    Abstract: A semiconductor integrated circuit comprises contact pads located over active components, which are positioned to minimize the distance for power delivery between a selected pad and one or more corresponding active components, to which the power is to be delivered. This minimum distance further enhances dissipation of thermal energy released by the active components.
    Type: Application
    Filed: July 30, 2001
    Publication date: January 31, 2002
    Inventors: Taylor R. Efland, Sameer Pendharkar
  • Publication number: 20010053581
    Abstract: A RESURF LDMOS transistor (64) includes a RESURF region (42) that is self-aligned to a LOCOS field oxide region (44). The self-alignment produces a stable breakdown voltage BVdss by eliminating degradation associated with geometric misalignment and process tolerance variation.
    Type: Application
    Filed: July 1, 1999
    Publication date: December 20, 2001
    Inventors: DAN M. MOSHER, TAYLOR R. EFLAND
  • Patent number: 6284669
    Abstract: A power field effect transistor is disclosed that includes polysilicon gate bodies (40) and (42), which includes platinum silicide contact layers (74) and (78) disposed on the outer surfaces of bodies (40) and (42), respectively. In addition, the device comprises an n+drain region (64) which also has a platinum silicide drain contact layer (76) formed on its outer surface and platinum silicide source contact layers (75) and (77). During formation, sidewall spacers (50) and (52), as well as mask bodies (70) and (72) are used to ensure that platinum silicide layer (76) spaced apart from both gate bodies (40) and (42) and platinum silicide gate contact layers (74) and (78).
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: September 4, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: John P. Erdeljac, Louis N. Hutter, Jeffrey P. Smith, Han-Tzong Yuan, Jau-Yuann Yang, Taylor R. Efland, C. Matthew Thompson, John K. Arch, Mary Ann Murphy
  • Patent number: 6274918
    Abstract: An integrated circuit (10) includes a P-epi substrate (12) having therein an n-well isolation layer (13) and a p-well (14) within the n-well. The p-well includes adjacent an upper surface thereof a p+ layer (18) having several elongate parallel openings (21-23) therethrough. Each of the openings has therein a respective n− RESURF layer (26-28). Each n− RESURF layer has therethrough a respective further elongate opening (31-33), and has a uniform horizontal thickness all around that opening. Each of the openings in the RESURF layers has therein an n+ finger (36-38). The p+ layer and the n+ fingers each have a vertical thickness which is greater than the vertical thickness of the n− RESURF layers. The p+ layer serves as the anode of a zener diode, and the n+ fingers are interconnected and serve as the cathode.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: August 14, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Chin-Yu Tsai, Taylor R. Efland
  • Patent number: 6236098
    Abstract: An integrated circuit chip (10, 50, 100) may comprise an integrated circuit (14, 54, 108, 110, 112) formed in a semiconductor layer (12, 52, 102). A thermal contact (16, 56, 116) may be formed at a high temperature region of the integrated circuit (14, 54, 108, 110, 112). A thick plated metal layer (40, 80, 140) may be generally isolated from the integrated circuit (14, 54, 108, 110, 112). The thick plated metal layer (40, 80, 140) may include a base (42, 82, 142) and an exposed surface (44, 84, 144) opposite the base (42, 82, 142). The base (42, 82, 142) may be coupled to the thermal contact (16, 56, 116) to receive thermal energy of the high temperature region. The exposed surface (44, 84, 144) may dissipate thermal energy received by the thick plated metal layer (40, 80, 140).
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: May 22, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, R. Travis Summerlin, Joseph A. Devore
  • Patent number: 6225673
    Abstract: An integrated circuit (13) includes a P-epi substrate (51) having first and second n+ isolation layers (53, 54) buried therein, the first and second isolation layers being respectively coupled to ground and to a supply voltage (VCC). A contact region (52) of the substrate is closely adjacent a first isolation layer, is spaced from the second isolation layer, and is coupled to ground. First and second P-epi portions (57, 58) of the substrate are disposed within the first and second isolation layers. The first portion includes an n+ source region (62) disposed in a p-well (61) which is closely adjacent the first isolation layer in the vicinity of the contact region, and includes an n+ drain region (68). The second portion includes an n+ source region (77) coupled to the drain region in the first portion, and an n+ drain region (82) coupled to the supply voltage.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: May 1, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Taylor R. Efland
  • Patent number: 6211552
    Abstract: A RESURF LDMOS transistor (32) has a drain region including a first region (24) and a deep drain buffer region (34) surrounding the first region. The first region is more heavily doped than the deep drain buffer region. The deep drain buffer region improves the robustness of the transistor.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: April 3, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Sameer Pendharkar, Dan M. Mosher, Peter Chia-cu Mei
  • Patent number: 6160290
    Abstract: A semiconductor device (10) comprises a reduced surface field (RESURF) implant (14). A field oxide layer (20), having a length, is formed over the RESURF implant (14). A field plate (12) extends from a near-side of the field oxide layer (20) and over at least one-half of the length of the field oxide layer (20).
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: December 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Taylor R. Efland
  • Patent number: 6160388
    Abstract: A DC-DC converter that generates a sense signal representing a voltage drop across a low-side switch when the low-side switch is on. The sense signal is inverted and stored in a "hold" capacitor until the beginning of the next switching cycle. More specifically, an input node receives an input voltage V.sub.IN. A driver stage coupled to the input node and to a reference node chops V.sub.IN into a square wave under control of a PWM signal. The chopped V.sub.IN signal is coupled to an intermediate output node. An output stage coupled to the intermediate output node converts the chopped V.sub.IN signal to an output voltage V.sub.OUT to a load coupled to an output node. A sense unit coupled to sense a voltage on the intermediate output node generates a voltage signal indicating current flowing in the load.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: December 12, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Dale J. Skelton, Chao-Chih Chiu, Taylor R. Efland
  • Patent number: 6150722
    Abstract: A thick copper interconnection structure and method for an LDMOS transistor for power semiconductor devices. A large LDMOS transistor is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain. Gate regions are formed between the alternating source and drain diffusions. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form a source and a drain bus. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive copper layer.
    Type: Grant
    Filed: October 4, 1995
    Date of Patent: November 21, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Dave Cotton, Dale J. Skelton