Patents by Inventor Tenko Yamashita

Tenko Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468525
    Abstract: Vertical field effect transistor complementary metal oxide semiconductor (VFET CMOS) structures and methods of fabrication include a single mask level for forming the dual source/drains in both the NFET region and the PFET region. The VFET CMOS structures and methods of fabrication further include equal epi-to-channel distances in both the NFET region and PFET regions.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: November 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20190334033
    Abstract: A method of forming a vertical transport fin field effect transistor and a long-channel field effect transistor on the same substrate, including, forming a recessed region in a substrate and a fin region adjacent to the recessed region, forming one or more vertical fins on the fin region, forming a long-channel pillar from the substrate in the recessed region, where the long-channel pillar is at a different elevation than the one or more vertical fins, forming two or more long-channel source/drain plugs on the long-channel pillar, forming a bottom source/drain plug in the fin region, where the bottom source/drain plug is below the one or more vertical fins, forming a gate structure on the long-channel pillar and a gate structure on the one or more vertical fins, and forming a top source/drain on the top surface of the one or more vertical fins.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Inventors: Cheng Chi, Tenko Yamashita, Chen Zhang
  • Publication number: 20190326279
    Abstract: Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 24, 2019
    Inventors: Chen Zhang, Tenko Yamashita, Terence B. Hook
  • Patent number: 10453939
    Abstract: Embodiments of the invention are directed to a vertical FET device having gate and source or drain features. The device includes a fin formed in a substrate and a source or a drain region formed in the substrate. The device further includes a trench formed in the source or the drain region and a dielectric region formed in the trench. The device further includes a gate formed along vertical sidewalls of the fin and positioned such that a space between the gate and the source or the drain region includes at least a portion of the dielectric region. In some embodiments, the device further includes a bottom spacer formed over an upper surface of the dielectric region and positioned such that the space between the gate and the source or the drain region further includes at least a portion of the bottom spacer.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: October 22, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10453922
    Abstract: A method of forming a punch through stop region that includes forming isolation regions of a first dielectric material between adjacent fin structures and forming a spacer of a second dielectric material on sidewalls of the fin structure. The first dielectric material of the isolation region may be recessed with an etch process that is selective to the second dielectric material to expose a base sidewall portion of the fin structures. Gas phase doping may introduce a first conductivity type dopant to the base sidewall portion of the fin structure forming a punch through stop region underlying a channel region of the fin structures.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Sivananda K. Kanakasabapathy, Fee Li Lie, Tenko Yamashita
  • Publication number: 20190312129
    Abstract: Techniques for forming VFET bottom source and drain epitaxy with anchors are provided. In one aspect, a method of forming a VFET device includes: patterning at least one fin in a substrate; forming anchors on opposite ends of the at least one fin; laterally etching a base of the at least one fin, wherein the anchors prevent the lateral etching from being performed on the ends of the at least one fin; forming bottom source and drains at the base of the at least one fin between the anchors; removing the anchors; forming bottom spacers on the bottom source and drains; forming gates above the bottom spacers alongside the at least one fin; forming top spacers above the gates; and forming top source and drains above the top spacers at a top of the at least one fin. VFET devices are also provided.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Inventors: Chen Zhang, Tenko Yamashita
  • Patent number: 10439045
    Abstract: A technique relates to a semiconductor device. A vertical channel layer is formed with inner spacers on opposite ends of the vertical channel layer. A gate stack is formed having a gate length determined by the inner spacers. Source or drain (S/D) regions are formed on the opposite ends of the vertical channel layer.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: October 8, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tenko Yamashita, Chen Zhang
  • Patent number: 10439031
    Abstract: Structures for a vertical-transport field-effect transistor and an electrical fuse integrated into an integrated circuit, and methods of fabricating a vertical-transport field-effect transistor and an electrical fuse integrated into an integrated circuit. A doped semiconductor layer that includes a first region with a first electrode of the vertical electrical fuse and a second region with a first source/drain region of the vertical-transport field effect transistor. A semiconductor fin is formed on the first region of the doped semiconductor layer, and a fuse link is formed on the second region of the doped semiconductor layer. A second source/drain region is formed that is coupled with the fin. A gate structure is arranged vertically between the first source/drain region and the second source/drain region. A second electrode of the vertical fuse is formed such that the fuse link is arranged vertically between the first electrode and the second electrode.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: October 8, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Kangguo Cheng, Tenko Yamashita, Chun-chen Yeh
  • Publication number: 20190305104
    Abstract: A substrate structure includes a set of nanosheet layers stacked upon a substrate. The substrate structure includes a p-channel region and an n-channel region. The substrate structure further includes divots within the p-channel region and the n-channel region. A first liner is formed within the divots of the n-channel region. The first liner is formed of a material having a positive charge. A second liner is formed within the divots of the p-channel region. The second liner is formed of a material having a negative charge. A p-type epitaxy is deposited in the p-channel region to form first air gap spacers of the divots in the p-channel region. An n-type epitaxy is deposited in the n-channel region to form second air gap spacers of the divots in the n-channel region.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Applicant: International Business Machines Corporation
    Inventors: Ruilong Xie, Kangguo Cheng, Chun-Chen Yeh, Tenko Yamashita
  • Patent number: 10418277
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Patent number: 10418485
    Abstract: A method of forming a vertical transport fin field effect transistor and a long-channel field effect transistor on the same substrate, including, forming a recessed region in a substrate and a fin region adjacent to the recessed region, forming one or more vertical fins on the fin region, forming a long-channel pillar from the substrate in the recessed region, where the long-channel pillar is at a different elevation than the one or more vertical fins, forming two or more long-channel source/drain plugs on the long-channel pillar, forming a bottom source/drain plug in the fin region, where the bottom source/drain plug is below the one or more vertical fins, forming a gate structure on the long-channel pillar and a gate structure on the one or more vertical fins, and forming a top source/drain on the top surface of the one or more vertical fins.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng Chi, Tenko Yamashita, Chen Zhang
  • Publication number: 20190279913
    Abstract: Embodiments of the invention are directed to a method and resulting structures for a complementary metal oxide semiconductor (CMOS) having source and drain contacts formed using trench solid and liquid phase epitaxy (SPE/LPE). In a non-limiting embodiment of the invention, an NFET is formed on a substrate. The NFET includes a p-type semiconductor fin vertically extending from an n-type bottom source or drain region of the substrate. A PFET is also formed on the substrate. The PFET includes an n-type semiconductor fin vertically extending from a p-type bottom source or drain region of the substrate. A first gate is formed over a channel region of the p-type semiconductor fin and a second gate is formed over a channel region of the n-type semiconductor fin. The first gate and the second gate include a common dipole layer. The NFET and PFET each include a linear threshold voltage of about 150 mV to about 250 mV and a difference between the linear threshold voltages of the NFET and PFET is less than about 50 mV.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 12, 2019
    Inventors: Oleg GLUSCHENKOV, Zuoguang LIU, Shogo MOCHIZUKI, Hiroaki NIIMI, Tenko YAMASHITA
  • Patent number: 10411127
    Abstract: A method of forming a vertical transport fin field effect transistor and a long-channel field effect transistor on the same substrate, including, forming a recessed region in a substrate and a fin region adjacent to the recessed region, forming one or more vertical fins on the fin region, forming a long-channel pillar from the substrate in the recessed region, where the long-channel pillar is at a different elevation than the one or more vertical fins, forming two or more long-channel source/drain plugs on the long-channel pillar, forming a bottom source/drain plug in the fin region, where the bottom source/drain plug is below the one or more vertical fins, forming a gate structure on the long-channel pillar and a gate structure on the one or more vertical fins, and forming a top source/drain on the top surface of the one or more vertical fins.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 10, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng Chi, Tenko Yamashita, Chen Zhang
  • Publication number: 20190267464
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a contact silicide on a source-drain (S-D) region of a field effect transistor (FET) having extensions by using an undercut etch and a salicide process. A method of forming a contact silicide extension is disclosed. The method may include: forming an undercut region below a dielectric layer and above a source-drain region, the undercut region located directly below a bottom of a contact trench and extending below the dielectric layer to a gate spacer formed on a sidewall of a gate stack; and forming a contact silicide in the undercut region, the contact silicide in direct contact with the source-drain region.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventors: Effendi Leobandung, Soon-Cheon Seo, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20190267279
    Abstract: Semiconductor devices having air gap spacers that are formed as part of BEOL or MOL layers of the semiconductor devices are provided, as well as methods for fabricating such air gap spacers. For example, a method comprises forming a first metallic structure and a second metallic structure on a substrate, wherein the first and second metallic structures are disposed adjacent to each other with insulating material disposed between the first and second metallic structures. The insulating material is etched to form a space between the first and second metallic structures. A layer of dielectric material is deposited over the first and second metallic structures using a pinch-off deposition process to form an air gap in the space between the first and second metallic structures, wherein a portion of the air gap extends above an upper surface of at least one of the first metallic structure and the second metallic structure.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Kangguo Cheng, Thomas J. Haigh, Juntao Li, Eric G. Liniger, Sanjay C. Mehta, Son V. Nguyen, Chanro Park, Tenko Yamashita
  • Publication number: 20190267474
    Abstract: Method and structure of forming a vertical FET. The method includes depositing a bottom source-drain layer over a substrate; depositing a first heterostructure layer over the bottom source-drain layer; depositing a channel layer over the first heterostructure layer; depositing a second heterostructure layer over the channel layer; forming a first fin having a hard mask; recessing the first and the second heterostructure layers to narrow them; filling gaps with an inner spacer; laterally trimming the channel layer to a narrower width; depositing a bottom outer spacer over the bottom source-drain layer; depositing a high-k layer on the bottom outer spacer, the first fin, and the hard mask; and depositing a metal gate layer over the high-k and top outer spacer to produce the vertical FET. Forming another structure by recessing the metal gate layer below the second inner spacer.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: TENKO YAMASHITA, CHEN ZHANG
  • Patent number: 10396000
    Abstract: Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 27, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Tenko Yamashita, Chun-Chen Yeh, Hui Zang
  • Patent number: 10396208
    Abstract: A method of fabricating a top source/drain junction of a vertical transistor includes forming a structure including a bottom source/drain, a fin channel extending vertically from the bottom source/drain, and a gate arranged around the fin channel, the gate including a dielectric layer, a gate metal, and spacers arranged on top and bottom surfaces of the gate; etching to form a recess in a top surface of the fin, the recess having sidewalls that form oblique angles with respect to sidewalls of the fin; forming a top source/drain on the fin and within the recess; doping the top source/drain with a dopant; and annealing to diffuse the dopants from the top source/drain into the fin.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Muthumanickam Sankarapandian, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10396183
    Abstract: In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. the second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Miaomiao Wang, Tenko Yamashita, Chun-chen Yeh, Hui Zang
  • Patent number: 10396177
    Abstract: Methods of forming the same include forming a stack of layers of alternating materials, including first layers of sacrificial material and second layers of channel material. The first layers are recessed relative to the second layers with an etch that etches the second layers at a slower rate than the first layers to taper ends of the second layers. First spacers are formed in recesses formed by recessing the first layers. Second spacers are formed in recesses formed by recessing the first layers. The first spacers are etched to expose sidewalls of the second spacer. Source/drain extensions are formed in contact with exposed ends of the second layers.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tenko Yamashita, Chun W. Yeung, Chen Zhang