Patents by Inventor Ting CHIU

Ting CHIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162318
    Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 16, 2024
    Inventors: Min-Kun DAI, Wei-Gang CHIU, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN
  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Patent number: 11977500
    Abstract: The invention introduces a method for executing host input-output (IO) commands, performed by a processing unit of a device side, at least including: in response to different types of host IO commands, using multiple stages of a generic framework to drive a frontend interface to interact with a host side for transmitting user data read from a storage unit to the host side, and receiving user data to be programmed into the storage unit from the host side. The frontend interface includes a register, and a data line coupled to the host side. The stages of the generic framework are used to access to the register of the frontend interface and operate the data line of the frontend interface to complete interactions with the host side.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: May 7, 2024
    Assignee: SILICON MOTION, INC.
    Inventor: Shen-Ting Chiu
  • Patent number: 11972150
    Abstract: The invention relates to a method, a non-transitory computer-readable storage medium and an apparatus for programming data into flash memory. The method includes: generating a front-end parameter set, a mid-end parameter set and a back-end parameter set for each data-programming transaction; transmitting the front-end parameter set of each data-programming transaction to a routing engine, thereby enabling the routing engine to drive a host interface (I/F) to obtain from the host side; transmitting the mid-end parameter set of each data-programming transaction to an accelerator, thereby enabling the accelerator to drive the RAID engine to encrypt raw data or generate parity-page data according to multiple pages of the raw data; and transmitting the back-end parameter set of each data-programming transaction to the accelerator, thereby enabling the accelerator to drive a data access engine to program source data into a designated physical address of a flash module.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: April 30, 2024
    Assignee: SILICON MOTION, INC.
    Inventor: Shen-Ting Chiu
  • Publication number: 20240136183
    Abstract: A photo resist layer is used to protect a dielectric layer and conductive elements embedded in the dielectric layer when patterning an etch stop layer underlying the dielectric layer. The photo resist layer may further be used to etch another dielectric layer underlying the etch stop layer, where etching the next dielectric layer exposes a contact, such as a gate contact. The bottom layer can be used to protect the conductive elements embedded in the dielectric layer from a wet etchant used to etch the etch stop layer.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Yu-Shih Wang, Hong-Jie Yang, Chia-Ying Lee, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11966604
    Abstract: The invention relates to a method and an apparatus for programming data into flash memory. The method includes: obtaining, by the accelerator, an execution table indicating that data related to the first virtual carrier need to go through a mid-end and a back-end processing stages earlier than data related to other virtual carriers; driving, by the routing engine, a host interface (I/F) to obtain data associated with all cargos in the second virtual carrier, updating the second cargo flags with third cargo flags to indicate that data associated with all the cargos in the second virtual carrier are prepared in the front-end processing stage; and determining, by the accelerator, that data associated with any cargo in the first virtual carrier hasn't been prepared according to information of the first cargo flags, and disallowing the second virtual carrier to proceed to the following processing stages.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: April 23, 2024
    Assignee: SILICON MOTION, INC.
    Inventor: Shen-Ting Chiu
  • Patent number: 11966607
    Abstract: The invention relates to a method, a non-transitory computer-readable storage medium and an apparatus for accessing to encoding-history information. The method includes: providing a super-block formed by storage space of flash units, where the super-block includes zones, each zone includes super-page strings, and each super-page string includes pages across the flash units; and programming encoding-history information into a metadata section of a designated first page of a designated super-page string, thereby enabling a damaged page that is occurred in the designated super-page string of the designated zone to be recovered according to the encoding-history information. The encoding-history information includes a history profile and history entries. The history profile indicates which zone or zones are covered in the super-block, and a quantity of the history entries.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: April 23, 2024
    Assignee: SILICON MOTION, INC.
    Inventor: Shen-Ting Chiu
  • Publication number: 20240128324
    Abstract: A field effect transistor includes a substrate having a transistor forming region thereon; an insulating layer on the substrate; a first graphene layer on the insulating layer within the transistor forming region; an etch stop layer on the first graphene layer within the transistor forming region; a first inter-layer dielectric layer on the etch stop layer; a gate trench recessed into the first inter-layer dielectric layer and the etch stop layer within the transistor forming region; a second graphene layer on interior surface of the gate trench; a gate dielectric layer on the second graphene layer and on the first inter-layer dielectric layer; and a gate electrode on the gate dielectric layer within the gate trench.
    Type: Application
    Filed: November 21, 2022
    Publication date: April 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Shih-Min Chou, Nien-Ting Ho, Wei-Ming Hsiao, Li-Han Chen, Szu-Yao Yu, Chung-Yi Chiu
  • Publication number: 20240128127
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-l Fu, Chun-ya Chiu, Chi-Ting Wu, Chin-HUNG Chen, Yu-Hsiang Lin
  • Patent number: 11960106
    Abstract: The disclosure provides an augmented reality (AR) device, a notebook, and smart glasses. The AR device includes a laser source, a spatial light modulator (SLM), and a hologram optical element (HOE). The laser source provides a coherent laser ray. The SLM provides a diffraction pattern solely corresponding to the coherent laser ray. When the SLM receives the coherent laser ray, the diffraction pattern diffracts the coherent laser ray as a hologram in response to the coherent laser ray. The HOE provides a concave mirror effect merely in response to a wavelength of the coherent laser ray, wherein the HOE receives the hologram and magnifies the hologram as a stereoscopic virtual image.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: April 16, 2024
    Assignee: Acer Incorporated
    Inventors: Yi-Jung Chiu, Wei-Kuo Shih, Shih-Ting Huang
  • Patent number: 11948820
    Abstract: The present invention provides a latching guide structure arranged inside a door of semiconductor carrier. The latching guide structure comprises an upper latching part, a lower latching part, at least one elastic unit and a driver. Moreover, a first guiding portion of the upper latching part is matched with a second guiding portion of the lower latching part, therefore to define the installation space for the at least one elastic unit. On the other hand, the driver simultaneously actuates an upper actuating unit of the first guiding portion and a lower actuating unit of the second guiding portion to linearly move in reverse direction therebetween. The range of the linear motion of the upper actuating unit and the lower actuating unit represents the compression or extension of the at least one elastic unit, determining to control the open/close status of the upper latching part and the lower latching part.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: April 2, 2024
    Assignee: GUDENG PRECISION INDUSTRIAL CO., LTD.
    Inventors: Ming-Chien Chiu, Chih-Ming Lin, Cheng-Han Chou, Po-Ting Lee
  • Publication number: 20240105481
    Abstract: The present invention provides a latching guide structure arranged inside a door of semiconductor carrier. The latching guide structure comprises an upper latching part, a lower latching part, at least one elastic unit and a driver. Moreover, a first guiding portion of the upper latching part is matched with a second guiding portion of the lower latching part, therefore to define the installation space for the at least one elastic unit. On the other hand, the driver simultaneously actuates an upper actuating unit of the first guiding portion and a lower actuating unit of the second guiding portion to linearly move in reverse direction therebetween. The range of the linear motion of the upper actuating unit and the lower actuating unit represents the compression or extension of the at least one elastic unit, determining to control the open/close status of the upper latching part and the lower latching part.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 28, 2024
    Inventors: MING-CHIEN CHIU, CHIH-MING LIN, CHENG-HAN CHOU, PO-TING LEE
  • Publication number: 20240107682
    Abstract: An embodiment composite material for semiconductor package mount applications may include a first component including a tin-silver-copper alloy and a second component including a tin-bismuth alloy or a tin-indium alloy. The composite material may form a reflowed bonding material having a room temperature tensile strength in a range from 80 MPa to 100 MPa when subjected to a reflow process. The reflowed bonding material may include a weight fraction of bismuth that is in a range from approximately 4% to approximately 15%. The reflowed bonding material may an alloy that is solid solution strengthened by a presence of bismuth or indium that is dissolved within the reflowed bonding material or a solid solution phase that includes a minor component of bismuth dissolved within a major component of tin. In some embodiments, the reflowed bonding material may include intermetallic compounds formed as precipitates such as Ag3Sn and/or Cu6Sn5.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Wei Chiu, Chih-Chiang Tsao, Jen-Jui Yu, Hsuan-Ting Kuo, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Patent number: 11939268
    Abstract: A method of forming low-k material is provided. The method includes providing a plurality of core-shell particles. The core of the core-shell particles has a first ceramic with a low melting point. The shell of the core-shell particles has a second ceramic with a low melting point and a low dielectric constant. The core-shell particles are sintered and molded to form a low-k material. The shell of the core-shell particles is connected to form a network structure of a microcrystal phase.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 26, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Chuang Chiu, Tzu-Yu Liu, Tien-Heng Huang, Tzu-Chi Chou, Cheng-Ting Lin
  • Publication number: 20240097005
    Abstract: Disclosed is a semiconductor device and semiconductor fabrication method. A semiconductor device includes: a gate structure over a semiconductor substrate, having a high-k dielectric layer, a p-type work function layer, an n-type work function layer, a dielectric anti-reaction layer, and a glue layer; and a continuous metal cap over the gate structure formed by metal material being deposited over the gate structure, a portion of the anti-reaction layer being selectively removed, and additional metal material being deposited over the gate structure. A semiconductor fabrication method includes: receiving a gate structure; flattening the top layer of the gate structure; precleaning and pretreating the surface of the gate structure; depositing metal material over the gate structure to form a discontinuous metal cap; selectively removing a portion of the anti-reaction layer; depositing additional metal material over the gate structure to create a continuous metal cap; and containing growth of the metal cap.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hang Chiu, Jui-Yang Wu, Kuan-Ting Liu, Weng Chang
  • Publication number: 20240096883
    Abstract: A method of manufacturing a gate structure includes at least the following steps. A gate dielectric layer is formed. A work function layer is deposited on the gate dielectric layer. A barrier layer is formed on the work function layer. A metal layer is deposited on the barrier layer to introduce fluorine atoms into the barrier layer. The barrier layer is formed by at least the following steps. A first TiN layer is formed on the work function layer. A top portion of the first TiN layer is converted into a trapping layer, and the trapping layer includes silicon atoms or aluminum atoms. A second TiN layer is formed on the trapping layer.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Patent number: 11934106
    Abstract: An optical proximity correction (OPC) device and method is provided. The OPC device includes an analysis unit, a reverse pattern addition unit, a first OPC unit, a second OPC unit and an output unit. The analysis unit is configured to analyze a defect pattern from a photomask layout. The reverse pattern addition unit is configured to provide a reverse pattern within the defect pattern. The first OPC unit is configured to perform a first OPC procedure on whole of the photomask layout. The second OPC unit is configured to perform a second OPC procedure on the defect pattern of the photomask layout to enhance an exposure tolerance window. The output unit is configured to output the photomask layout which is corrected.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shu-Yen Liu, Hui-Fang Kuo, Chian-Ting Huang, Wei-Cyuan Lo, Yung-Feng Cheng, Chung-Yi Chiu
  • Patent number: 11935935
    Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Min-Kun Dai, Wei-Gang Chiu, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11934171
    Abstract: The present disclosure discloses a servo motor and an encoder calibration method. The encoder calibration method includes: calculating a gain error, an offset error and a phase error, by an error calculation block, according to a first signal and a second signal output by an encoder; calculating at least one gain calibration parameter, at least one offset calibration parameter and at least one phase calibration parameter, by the error calibration block, according to the gain error, the offset error and the phase error; and calibrating sequentially, by the encoder, the gain, the offset and the phase of the first signal and the second signal according to the at least one gain calibration parameter, the at least one offset calibration parameter and the at least one phase calibration parameter, wherein performing at least one gain calibration and offset calibration after the phase calibration is completed.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: March 19, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Kai Chiu, Bo-Ting Yeh, Tsan-Huang Chen