Patents by Inventor Ting Chu
Ting Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11869564Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is disposed over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random-access memory (FeRAM) device is disposed over the substrate between the select gate and the first source/drain region. A first sidewall spacer, including one or more dielectric materials, is arranged laterally between the select gate and the FeRAM device. An inter-level dielectric (ILD) structure laterally surrounds the FeRAM device and the select gate and vertically overlies a top surface of the first sidewall spacer.Type: GrantFiled: July 18, 2022Date of Patent: January 9, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
-
Patent number: 11869943Abstract: A silicon carbide semiconductor device, in particular a monolithically integrated trench Metal-Oxide-Semiconductor Field-Effect Transistor with segmentally surrounded trench Schottky diode, includes a semiconductor substrate, a trench Metal-Oxide-Semiconductor Field-Effect Transistor and a trench Schottky diode. The trench Schottky diode has a perpendicularly disposed trench extending in a first horizontal direction, a metal electrode filled into the trench, and a plurality of doped regions disposed segmentally and extending in a second horizontal direction around the trench. The first horizontal direction is substantially orthogonal to the second horizontal direction, a side wall and a bottom wall of the metal electrode in the trench forms a Schottky junction, and the current flowing from the metal electrode is restricted between adjacent doped regions.Type: GrantFiled: December 11, 2020Date of Patent: January 9, 2024Assignee: SHANGHAI HESTIA POWER INC.Inventors: Chien-Chung Hung, Kuo-Ting Chu, Chwan-Yin Li
-
Patent number: 11856788Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a bottom electrode layer over a substrate; depositing a ferroelectric layer over the bottom electrode layer; depositing a first top electrode layer over the ferroelectric layer, wherein the first top electrode layer comprises a first metal; depositing a second top electrode layer over the first top electrode layer, wherein the second top electrode layer comprises a second metal, and a standard reduction potential of the first metal is greater than a standard reduction potential of the second metal; and removing portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer to form a memory stack, the memory stack comprising remaining portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer.Type: GrantFiled: March 4, 2021Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Alexander Kalnitsky
-
Patent number: 11856797Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain has a zero-tilt doping profile and the source has a tilted doping profile. The resistive memory element is coupled with the drain via a portion of an interconnect structure.Type: GrantFiled: January 31, 2022Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
-
Patent number: 11844286Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.Type: GrantFiled: November 30, 2021Date of Patent: December 12, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
-
Patent number: 11839090Abstract: Various embodiments of the present application are directed towards an integrated chip comprising memory cells separated by a void-free dielectric structure. In some embodiments, a pair of memory cell structures is formed on a via dielectric layer, where the memory cell structures are separated by an inter-cell area. An inter-cell filler layer is formed covering the memory cell structures and the via dielectric layer, and further filling the inter-cell area. The inter-cell filler layer is recessed until a top surface of the inter-cell filler layer is below a top surface of the pair of memory cell structures and the inter-cell area is partially cleared. An interconnect dielectric layer is formed covering the memory cell structures and the inter-cell filler layer, and further filling a cleared portion of the inter-cell area.Type: GrantFiled: June 9, 2021Date of Patent: December 5, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
-
Patent number: 11835614Abstract: A graphical near-field identification method and apparatus are provided. The method includes filtering a searched beacon signal according to a preset filtration condition. The method further includes matching a filtered beacon with beacons in all beacon graphs to obtain a beacon graph having a largest beacon matching number and the number of beacons matched with the beacon graph. The method further includes determining whether the number of the beacons matched with the beacon graph is less than a beacon determination minimum number requirement. The method further includes determining whether the number of the beacons matched with the beacon graph meets a beacon graph benchmark number condition. The method further includes determining that an object position is in a scenario where the beacon graph is located. The method further includes estimating a distance to the beacon by using a RSSI value of the beacon signal.Type: GrantFiled: December 30, 2020Date of Patent: December 5, 2023Assignee: Opple Lighting Co., Ltd.Inventors: Jianming Xia, Ting Chu
-
Patent number: 11832529Abstract: The present disclosure relates to an integrated circuit. The integrated circuit includes a an inter-layer dielectric (ILD) structure laterally surrounding a conductive interconnect. A dielectric protection layer is disposed over the ILD structure and a passivation layer is disposed over the dielectric protection layer. The passivation layer includes a protrusion extending outward from an upper surface of the passivation layer. A bottom electrode continuously extends from over the passivation layer to between sidewalls of the passivation layer. A data storage element is over the bottom electrode and a top electrode is over the data storage element.Type: GrantFiled: April 20, 2022Date of Patent: November 28, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tong-Chern Ong, Wen-Ting Chu, Yu-Wen Liao, Kuei-Hung Shen, Kuo-Yuan Tu, Sheng-Huang Huang
-
Publication number: 20230380190Abstract: A method for fabricating an integrated circuit is provided. The method includes depositing a dielectric layer over a conductive feature; etching an opening in the dielectric layer to expose the conductive feature, such that the dielectric layer has a tapered sidewall surrounding the opening; depositing a bottom electrode layer into the opening in the dielectric layer; depositing a resistance switch layer over the bottom electrode layer; patterning the resistance switch layer and the bottom electrode layer respectively into a resistance switch element and a bottom electrode, in which a sidewall of the bottom electrode is landing on the tapered sidewall of the dielectric layer.Type: ApplicationFiled: July 28, 2023Publication date: November 23, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chieh-Fei CHIU, Wen-Ting CHU, Yong-Shiuan TSAIR, Yu-Wen LIAO, Chih-Yang CHANG, Chin-Chieh YANG
-
Publication number: 20230378058Abstract: Semiconductor packages and methods of forming the same are disclosed. An semiconductor package includes two dies, an encapsulant, a first metal line and a plurality of dummy vias. The encapsulant is disposed between the two dies. The first metal line is disposed over the two dies and the encapsulant, and electrically connected to the two dies. The plurality of dummy vias is disposed over the encapsulant and aside the first metal line.Type: ApplicationFiled: August 1, 2023Publication date: November 23, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ching-Yu Huang, Han-Ping Pu, Ming-Kai Liu, Ting-Chu Ko, Yung-Ping Chiang, Chang-Wen Huang, Yu-Sheng Hsieh
-
Publication number: 20230371396Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over a substrate. The bottom electrode has a first thickness along an outermost edge and a second thickness between the outermost edge and a lateral center of the bottom electrode. The first thickness is larger than the second thickness. A data storage structure is over the bottom electrode and a top electrode is over the data storage structure.Type: ApplicationFiled: July 24, 2023Publication date: November 16, 2023Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tong-Chern Ong, Wen-Ting Chu, Yu-Wen Liao, Kuei-Hung Shen, Kuo-Yuan Tu, Sheng-Huang Huang
-
Publication number: 20230371407Abstract: A semiconductor structure includes a first electrode comprising a first metallic material; a memory film including at least one dielectric metal oxide material and contacting the first electrode; and a second electrode comprising a second metallic material and contacting the memory film. The memory film includes a center region having a first average atomic ratio of a passivation element to oxygen that is less than 0.01, and includes a peripheral region having a second average atomic ratio of the passivation element to oxygen that is greater than 0.05.Type: ApplicationFiled: August 15, 2022Publication date: November 16, 2023Inventors: Watson Liu, Fu-Ting Sung, Hsia-Wei Chen, Yu-Wen Liao, Wen-Ting Chu
-
Publication number: 20230371263Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip including forming a ferroelectric layer over a bottom electrode layer, forming a top electrode layer over the ferroelectric layer, performing a first removal process to remove peripheral portions of the bottom electrode layer, the ferroelectric layer, and the top electrode layer, and performing a second removal process using a second etch that is selective to the bottom electrode layer and the top electrode layer to remove portions of the bottom electrode layer and the top electrode layer, so that after the second removal process the ferroelectric layer has a surface that protrudes past a surface of the bottom electrode layer and the top electrode layer.Type: ApplicationFiled: July 24, 2023Publication date: November 16, 2023Inventors: Chih-Hsiang Chang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Tzu-Yu Chen, Fu-Chen Chang
-
Publication number: 20230366407Abstract: A magnetically attracted fan set comprises N+1 fans, the N?1, and each of the N+1 fans has a fan frame and an airflow generating component disposed on the fan frame. Any two adjacent fans of the N+1 fans respectively have a joint surface, each of the joint surfaces has at least one fixing member capable of forming magnetic attraction, when the joint surface is close to the other joint surface at a distance sufficient for the two fixing members on the two joint surfaces to form magnetic attraction, two of the N+1 fans are joined together. Accordingly, the invention is capable of directly and quickly joining the N+1 fans without requiring complicated assembly gestures or other external components.Type: ApplicationFiled: July 24, 2023Publication date: November 16, 2023Inventors: Hsiu-Cheng CHANG, Cheng-Ting CHU
-
Publication number: 20230354618Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first resistive random access memory (RRAM) element and a second RRAM element over a substrate. A conductive element is arranged below the first RRAM element and the second RRAM element. The conductive element electrically couples the first RRAM element to the second RRAM element. An upper insulating layer continuously extends over the first RRAM element and the second RRAM element. An upper inter-level dielectric (ILD) structure laterally surrounds the first RRAM element and the second RRAM element. The upper insulating layer separates the first RRAM element and the second RRAM element from the upper ILD structure.Type: ApplicationFiled: July 6, 2023Publication date: November 2, 2023Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
-
Patent number: 11800720Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a bottom electrode disposed over a substrate. A data storage structure is disposed on the bottom electrode and is configured to store a data state. A top electrode is disposed on the data storage structure. The top electrode has interior surfaces defining a recess within an upper surface of the top electrode. A masking layer contacts a bottom of the recess and extends to over the upper surface of the top electrode. An interconnect extends through the masking layer and to the top electrode. The interconnect is directly over the upper surface of the top electrode.Type: GrantFiled: November 17, 2021Date of Patent: October 24, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Chih-Hsiang Chang, Fu-Chen Chang
-
Publication number: 20230329128Abstract: A memory device includes a bottom electrode, a buffer element, a metal-containing oxide portion, a resistance switch element, and a top electrode. The buffer element is over the bottom electrode. The metal-containing oxide portion is over the buffer element, in which the metal-containing oxide portion has a same metal material as that of the buffer element. The resistance switch element is over the metal-containing oxide portion. The top electrode is over the resistance switch element.Type: ApplicationFiled: June 12, 2023Publication date: October 12, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsia-Wei CHEN, Chih-Hung PAN, Chih-Hsiang CHANG, Yu-Wen LIAO, Wen-Ting CHU
-
Patent number: 11785777Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip including forming a ferroelectric layer over a bottom electrode layer, forming a top electrode layer over the ferroelectric layer, performing a first removal process to remove peripheral portions of the bottom electrode layer, the ferroelectric layer, and the top electrode layer, and performing a second removal process using a second etch that is selective to the bottom electrode layer and the top electrode layer to remove portions of the bottom electrode layer and the top electrode layer, so that after the second removal process the ferroelectric layer has a surface that protrudes past a surface of the bottom electrode layer and the top electrode layer.Type: GrantFiled: January 12, 2022Date of Patent: October 10, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsiang Chang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Tzu-Yu Chen, Fu-Chen Chang
-
Publication number: 20230309318Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.Type: ApplicationFiled: May 26, 2023Publication date: September 28, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
-
Publication number: 20230284540Abstract: A resistive memory device includes an ultrathin barrier layer disposed between the bottom electrode and the bottom electric contact to the memory device. The ultrathin barrier layer may reduce the overall step height of the resistive memory elements by 15% or more, including up to about 20% or more. The use of an ultrathin barrier layer may additionally improve the uniformity of the thickness of the dielectric etch stop layer that partially underlies and extends between the memory elements by at least about 15%. The use of an ultrathin barrier layer may result in improved manufacturability and provide reduced costs and higher yields for resistive memory devices, and may facilitate integration of resistive memory devices in advanced technology nodes.Type: ApplicationFiled: June 29, 2022Publication date: September 7, 2023Inventors: Hsia-Wei Chen, Chih-Hsiang Chang, Yu-Wen Liao, Wen-Ting Chu