Patents by Inventor Tsai-An Yu

Tsai-An Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260804
    Abstract: The method includes performing a well implantation process to dope a dopant into a semiconductor substrate; after performing the well implantation process, performing a flash anneal on the semiconductor substrate, the flash anneal including a first preheat step and a first annealing step after the first preheat step, the first preheat step performed at a preheat temperature ranging from about 200° C. to about 800° C., the first annealing step having a peak temperature ramp profile, the peak temperature ramp profile having a peak temperature ranging from about 1000° C. to about 1200° C.; after performing the flash anneal, performing a rapid thermal anneal (RTA) on the semiconductor substrate, the RTA including a second preheat step, the first preheat step of the flash anneal being performed for a shorter duration than the second preheat step of the RTA.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhih-Yong HAN, Wen-Yen CHEN, Po-Kang HO, Tsai-Yu HUANG, Huicheng CHANG, Yee-Chia YEO
  • Patent number: 11688625
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming at least one epitaxial layer over a substrate; forming a mask over the epitaxial layer; patterning the epitaxial layer into a semiconductor fin; depositing a semiconductor capping layer over the semiconductor fin and the mask, wherein the semiconductor capping layer has a first portion that is amorphous on a sidewall of the mask; performing a thermal treatment such that the first portion of the semiconductor capping layer is converted from amorphous into crystalline; forming an isolation structure around the semiconductor fin; and forming a gate structure over the semiconductor fin.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Kai Hsiao, Tsai-Yu Huang, Hui-Cheng Chang, Yee-Chia Yeo
  • Patent number: 11670551
    Abstract: The present disclosure provides methods of fabricating a semiconductor device. A method according to one embodiment includes forming, on a substrate, a first fin formed of a first semiconductor material and a second fin formed of a second semiconductor material different from the first semiconductor material, forming a semiconductor cap layer over the first fin and the second fin, and annealing the semiconductor cap layer at a first temperature while at least a portion of the semiconductor cap layer is exposed.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Chi Yang, Allen Chien, Cheng-Ting Ding, Chien-Chih Lin, Chien-Chih Lee, Shih-Hao Lin, Tsung-Hung Lee, Chih Chieh Yeh, Po-Kai Hsiao, Tsai-Yu Huang
  • Patent number: 11664425
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: May 30, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Patent number: 11646349
    Abstract: A structure of semiconductor device is provided, including a substrate. First and second trench isolations are disposed in the substrate. A height of a portion of the substrate is between a top and a bottom of the first and second trench isolations. A gate insulation layer is disposed on the portion of the substrate between the first and second trench isolations. A first germanium (Ge) doped layer region is disposed in the portion of the substrate just under the gate insulation layer. A second Ge doped layer region is in the portion of the substrate, overlapping with the first Ge doped layer region to form a Ge gradient from high to low along a depth direction under the gate insulation layer. A fluorine (F) doped layer region is in the portion of the substrate, lower than and overlapping with the first germanium doped layer region.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: May 9, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20230125282
    Abstract: A sensor device adapted to suit curved surfaces includes a flexible substrate, a plurality of sensing units and a plurality of connecting lines. The flexible substrate includes a plurality of connecting sections, wherein each of the plurality of connecting sections comprises at least one closed hollow region. A plurality of sensing units, disposed on the flexible substrate and arranged in an array; and a plurality of connecting lines, disposed on the flexible substrate. Each of the plurality of connecting lines is connected to two adjacent ones of the plurality of sensing units, and the plurality of connecting sections are respectively overlapped with the plurality of connecting lines.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 27, 2023
    Applicant: Cognito Health Inc.
    Inventors: Li-Chin Ho, Tsai-Yu Lin
  • Publication number: 20230114216
    Abstract: A semiconductor device and a method of forming the same are provided. A method includes forming a fin structure on a substrate. The fin structure includes a plurality of first nanostructures and a plurality of second nanostructures alternately stacked. A dummy gate is formed along sidewalls and a top surface of the fin structure. A portion of the fin structure exposed by the dummy gate is recessed to form a first recess. An epitaxial source/drain region is formed in the first recess. Dopant atoms within the epitaxial source/drain region are driven into the plurality of second nanostructures. The dummy gate and the plurality of first nanostructures are removed. A replacement gate is formed wrapping around the plurality of second nanostructures.
    Type: Application
    Filed: May 13, 2022
    Publication date: April 13, 2023
    Inventors: Yi-Yun Li, Tsai-Yu Huang, Li-Ting Wang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230068951
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming at least one epitaxial layer over a substrate; forming a mask over the epitaxial layer; patterning the epitaxial layer into a semiconductor fin; depositing a semiconductor capping layer over the semiconductor fin and the mask, wherein the semiconductor capping layer has a first portion that is amorphous on a sidewall of the mask; performing a thermal treatment such that the first portion of the semiconductor capping layer is converted from amorphous into crystalline; forming an isolation structure around the semiconductor fin; and forming a gate structure over the semiconductor fin.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Kai HSIAO, Tsai-Yu HUANG, Hui-Cheng CHANG, Yee-Chia YEO
  • Publication number: 20230050645
    Abstract: A method of forming a semiconductor device is provided. The method includes providing a substrate having a first region and a second region; forming a plurality of trenches in the first region of the substrate; forming a multi-layer stack over the substrate and in the trenches; and patterning the multi-layer stack and the substrate to form first nanostructures over first fins in the first region and second nanostructures over second fins in the second region, where the multi-layer stack includes at least one of first semiconductor layers and at least one of second semiconductor layer stacked alternately, and the plurality of trenches are in corresponding ones of the first fins.
    Type: Application
    Filed: March 8, 2022
    Publication date: February 16, 2023
    Inventors: Wen-Yen Chen, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11563110
    Abstract: A method for forming a semiconductor structure is provided. The method includes forming a fin structure over a substrate and forming an isolation structure over the substrate. In addition, the fin structure is protruded from the isolation structure. The method further includes trimming the fin structure to a first width and forming a Ge-containing material covering the fin structure. The method further includes annealing the fin structure and the Ge-containing material to form a modified fin structure. The method also includes trimming the modified fin structure to a second width.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Yun Li, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230014253
    Abstract: A semiconductor device includes a fin protruding from a substrate and extending in a first direction, a gate structure extending on the fin in a second direction, and a seal layer located on the sidewall of the gate structure. A first peak carbon concentration is disposed in the seal layer. A first spacer layer is located on the seal layer. A second peak carbon concentration is disposed in the first spacer layer. A second spacer layer is located on the first spacer layer.
    Type: Application
    Filed: August 2, 2021
    Publication date: January 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Shih-Cheng Chen, Chia-Wei Chang, Chia-Ming Kuo, Tsai-Yu Wen, Yu-Ren Wang
  • Patent number: 11557654
    Abstract: A method for fabricating of semiconductor device is provided, including providing a substrate. A first trench isolation and a second trench isolation are formed in the substrate. A portion of the substrate is etched to have a height between a top and a bottom of the first and second trench isolations. A germanium (Ge) doped layer region is formed in the portion of the substrate. A fluorine (F) doped layer region is formed in the portion of the substrate, lower than and overlapping with the germanium doped layer region. An oxidation process is performed on the portion of the substrate to form a gate oxide layer between the first and second trench isolations.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 17, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20230008413
    Abstract: A method includes forming a fin protruding from a semiconductor substrate; forming a dummy gate stack over the fin, wherein forming the dummy gate stack includes depositing a layer of amorphous material over the fin; performing an anneal process on the layer of amorphous material, wherein the anneal process recrystallizes the layer of amorphous material into a layer of polycrystalline material, wherein the anneal process includes heating the layer of amorphous material for less than one millisecond; and patterning the layer of polycrystalline material; and forming an epitaxial source/drain region in the fin adjacent the dummy gate stack; and removing the dummy gate stack and replacing the dummy gate stack with a replacement gate stack.
    Type: Application
    Filed: February 16, 2022
    Publication date: January 12, 2023
    Inventors: Po-Kang Ho, Kuo-Ju Chen, Wei-Ting Chang, Wei-Fu Wang, Li-Ting Wang, Huicheng Chang, Yee-Chia Yeo, Yi-Chao Wang, Tsai-Yu Huang
  • Patent number: 11508222
    Abstract: A doorbell system includes a power supply circuit, a smart module, a chime, a chime switch and a control module. The smart module provides a smart function. The chime switch is electrically connected between the control module, the smart module, and the power supply circuit. When the chime switch is turned on, the current flows through the chime under control of the control module. When the chime switch is turned off, the current cannot flow through the chime under control of the control module; consequently, the buzzing sound cannot be generated.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 22, 2022
    Assignee: PRIMAX ELECTRONICS LTD.
    Inventors: Tsai-Yu Yu, Hung-Chen Wu, Teng-Chieh Yang
  • Publication number: 20220359517
    Abstract: In an embodiment, a device includes: a first semiconductor fin extending from a substrate; a second semiconductor fin extending from the substrate; a hybrid fin over the substrate, the second semiconductor fin disposed between the first semiconductor fin and the hybrid fin; a first isolation region between the first semiconductor fin and the second semiconductor fin; and a second isolation region between the second semiconductor fin and the hybrid fin, a top surface of the second isolation region disposed further from the substrate than a top surface of the first isolation region.
    Type: Application
    Filed: July 9, 2021
    Publication date: November 10, 2022
    Inventors: Po-Kang Ho, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220247977
    Abstract: A power supply method for a video doorbell is provided. The video doorbell is electrically connected with an external power supply unit. The video doorbell includes a camera unit, a power storage unit and an actuation unit. The power supply method includes the following steps. If the actuation unit is triggered, the power storage unit provides electric power to the camera unit. If the actuation unit has been triggered for a time duration longer than a predetermined length of time, the power supply unit provides electric power to the camera unit.
    Type: Application
    Filed: March 24, 2021
    Publication date: August 4, 2022
    Inventor: TSAI-YU YU
  • Publication number: 20220230908
    Abstract: A method includes etching a semiconductor substrate to form a trench and a semiconductor strip. A sidewall of the semiconductor strip is exposed to the trench. The method further includes depositing a silicon-containing layer extending into the trench, wherein the silicon-containing layer extends on the sidewall of the semiconductor strip, filling the trench with a dielectric material, wherein the dielectric material is on a sidewall of the silicon-containing layer, and oxidizing the silicon-containing layer to form a liner. The liner comprises oxidized silicon. The liner and the dielectric material form parts of an isolation region. The isolation region is recessed, so that a portion of the semiconductor strip protrudes higher than a top surface of the isolation region forms a semiconductor fin.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Po-Kai Hsiao, Han-De Chen, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220230926
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220157814
    Abstract: A semiconductor device includes a substrate having a P-type device region and an N-type device region, wherein the P-type device region includes germanium dopants. A first gate oxide layer is formed on the P-type device region and a second gate oxide layer is formed on the N-type device region. The first gate oxide layer and the second gate oxide layer are formed through a same oxidation process. The first gate oxide layer includes nitrogen dopants and the second gate oxide layer does not include the nitrogen dopants.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 19, 2022
    Inventors: Shi-You Liu, Ming-Shiou Hsieh, Zih-Hsuan Huang, Tsai-Yu Wen, Yu-Ren Wang
  • Patent number: D960373
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: August 9, 2022
    Assignee: Cognito Health Inc.
    Inventors: Li-Chin Ho, Tsai-Yu Lin, Chung-Chih Lin