Patents by Inventor Uday Shah

Uday Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7390947
    Abstract: A nanotube transistor, such as a carbon nanotube transistor, may be formed with a top gate electrode and a spaced source and drain. Conduction along the transistor from source to drain is controlled by the gate electrode. Underlying the gate electrode are at least two nanotubes. In some embodiments, the substrate may act as a back gate.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: June 24, 2008
    Assignee: Intel Corporation
    Inventors: Amlan Majumdar, Justin K. Brask, Marko Radosavljevic, Suman Datta, Brian S. Doyle, Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Robert S. Chau, Uday Shah, James Blackwell
  • Patent number: 7390709
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, a trench within the first dielectric layer, and a second dielectric layer on the substrate. The second dielectric layer has a first part that is formed in the trench and a second part. After a first metal layer with a first workfunction is formed on the first and second parts of the second dielectric layer, part of the first metal layer is converted into a second metal layer with a second workfunction.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 24, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Uday Shah, Matthew V. Metz, Suman Datta, Ramune Nagisetty, Robert S. Chau
  • Patent number: 7387927
    Abstract: A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: June 17, 2008
    Assignee: Intel Corporation
    Inventors: Robert B. Turkot, Jr., Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Uday Shah, Suman Datta, Robert S. Chau
  • Publication number: 20080135952
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
    Type: Application
    Filed: February 14, 2008
    Publication date: June 12, 2008
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Uday Shah, Chris E. Barns, Matthew V. Metz, Suman Datta, Annalisa Cappellani, Robert S. Chau
  • Publication number: 20080121998
    Abstract: Embodiments of an apparatus and methods for fabricating a spacer on one part of a multi-gate transistor without forming a spacer on another part of the multi-gate transistor are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: September 15, 2006
    Publication date: May 29, 2008
    Inventors: Jack T. Kavalieros, Uday Shah, Willy Rachmady, Brian S. Doyle
  • Publication number: 20080124857
    Abstract: A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 29, 2008
    Inventors: Justin K. Brask, Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Chris E. Barns, Uday Shah, Suman Datta, Christopher D. Thomas, Robert S. Chau
  • Patent number: 7361958
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: April 22, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalieros, Mark Doczy, Uday Shah, Robert S. Chau
  • Publication number: 20080090397
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: November 21, 2007
    Publication date: April 17, 2008
    Inventors: Justin Brask, Brian Dovle, Jack Kavalleros, Mark Doczy, Uday Shah, Robert Chau
  • Publication number: 20080087985
    Abstract: A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 17, 2008
    Inventors: Justin Brask, Jack Kavalieros, Mark Doczy, Matthew Metz, Suman Datta, Uday Shah, Gilbert Dewey, Robert Chau
  • Patent number: 7354832
    Abstract: A method of fabricating a tri-gate semiconductor device comprising a semiconductor body having an upper surface and side surfaces and a metal gate that has an approximately equal thickness on the upper and side surfaces. Embodiments of a tri-gate device with conformal physical vapor deposition workfunction metal on its three-dimensional body are described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: April 8, 2008
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Brian S. Doyle, Jack T. Kavalieros, Uday Shah
  • Patent number: 7355281
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 8, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Uday Shah, Chris E. Barns, Matthew V. Metz, Suman Datta, Annalisa Cappellani, Robert S. Chau
  • Publication number: 20080079094
    Abstract: Methods for inducing compressive strain in channel region of a non-planar transistor and devices and systems formed by such methods. In one embodiment, a method can include forming trenches in a semiconductor body adjacent to gate structure spacers. The semiconductor body can be situated on a substrate and in a different plane relative to the substrate. The gate structure can be situated on the semiconductor body and the silicon fin and perpendicular to the semiconductor body. After formation of the semiconductor body and the gate structure on the substrate, a dielectric material can be conformally deposited on the substrate and etched to form spacers on the semiconductor body and the gate structure. The substrate can be patterned and etched to form trenches in the semiconductor body adjacent to the spacers on the gate structure. A strain material can be introduced into the trenches.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Been-Yih Jin, Brian Doyle, Uday Shah, Jack Kavalieros
  • Publication number: 20080073723
    Abstract: Embodiments of an apparatus and methods for providing a workfunction metal gate electrode on a substrate with doped metal oxide semiconductor structures are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: September 22, 2006
    Publication date: March 27, 2008
    Inventors: Willy Rachmady, Uday Shah, Jack T. Kavalieros, Brian S. Doyle
  • Patent number: 7326656
    Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 5, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Brian S. Doyle, Jack Kavalleros, Mark Doczy, Uday Shah, Robert S. Chau
  • Patent number: 7323423
    Abstract: A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Suman Datta, Uday Shah, Gilbert Dewey, Robert S. Chau
  • Publication number: 20080003755
    Abstract: Embodiments of methods and apparatus for a sacrificial oxide layer which enables spacer over-etch in multi-gate architectures are generally described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: Uday Shah, Willy Rachmady, Jack T. Kavalieros, Brian S. Doyle
  • Publication number: 20070296048
    Abstract: A double gate transistor comprises a substrate (105, 905) and first and second electrically insulating layers (110, 910), (120, 920). The first and second electrically insulating layers form a fin (130, 930). A first gate dielectric (140,940) is at a first side (131, 931) of the fin and a second gate dielectric (150, 950) is at a second side (132, 932) of the fin. A first metal region (160, 960) is adjacent to the first gate dielectric and has a first surface (161, 961), and a second metal region (170, 970) is adjacent to the second gate dielectric and has a second surface (171, 971). The first electrically insulating layer has a third surface (111, 911), the second electrically insulating layer has a fourth surface (121, 921), and the first surface and the second surface lie between the third and fourth surfaces.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Ibrahim Ban, Uday Shah
  • Publication number: 20070287255
    Abstract: Embodiments of the invention include apparatuses and methods relating to three dimensional transistors having high-k dielectrics and metal gates with fins protected by a hard mask layer on their top surface. In one embodiment, the hard mask layer includes an oxide.
    Type: Application
    Filed: June 13, 2006
    Publication date: December 13, 2007
    Inventors: Brian S. Doyle, Uday Shah, Been-Yih Jin, Jack T. Kavalieros
  • Publication number: 20070257325
    Abstract: A method of fabricating a tri-gate semiconductor device comprising a semiconductor body having an upper surface and side surfaces and a metal gate that has an approximately equal thickness on the upper and side surfaces. Embodiments of a tri-gate device with conformal physical vapor deposition workfunction metal on its three-dimensional body are described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: May 3, 2006
    Publication date: November 8, 2007
    Inventors: Willy Rachmady, Brian Doyle, Jack Kavalieros, Uday Shah
  • Patent number: 7279375
    Abstract: A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Amlan Majumdar, Brian S. Doyle, Jack Kavalieros, Mark L. Doczy, Justin K. Brask, Uday Shah, Suman Datta, Robert S. Chau