Patents by Inventor Uday Shah

Uday Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110147697
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Uday Shah, Benjamin Chu-Kung, Been-Yih Jin, Ravi Pillarisetty, Marko Radosavljevic, Willy Rachmady
  • Publication number: 20110147812
    Abstract: Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Joseph M. Steigerwald, Uday Shah, Seiichi Morimoto, Nancy Zelick
  • Publication number: 20110147711
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20110062512
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 17, 2011
    Inventors: Uday Shah, Brian Doyle, Justin K. Brask, Robert S. Chau, Thomas A. Letson
  • Patent number: 7898041
    Abstract: A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: March 1, 2011
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Amlan Majumdar, Brian S. Doyle, Jack Kavalieros, Mark L. Doczy, Justin K. Brask, Uday Shah, Suman Datta, Robert S. Chau
  • Patent number: 7883951
    Abstract: A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: February 8, 2011
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Chris E. Barns, Uday Shah, Suman Datta, Christopher D. Thomas, Robert S. Chau
  • Publication number: 20100276757
    Abstract: Embodiments of the invention relate to a method of fabricating logic transistors using replacement metal gate (RMG) logic flow with modified process to form recessed channel array transistors (RCAT) on a common semiconductor substrate. An embodiment comprises forming an interlayer dielectric (ILD) layer on a semiconductor substrate, forming a first recess in the ILD layer of a first substrate region, forming a recessed channel in the ILD layer and in the substrate of a second substrate region, depositing a first conformal high-k dielectric layer in the first recess and a second conformal high-k dielectric layer in the recessed channel, and filling the first recess with a first gate metal and the recessed channel with a second gate metal.
    Type: Application
    Filed: May 4, 2009
    Publication date: November 4, 2010
    Inventors: Brian S. Doyle, Gilbert Dewey, Ravi Pillarisetty, Nick Lindert, Uday Shah, Dinesh Somasekhar
  • Patent number: 7825437
    Abstract: In general, in one aspect, a method includes forming N-diffusion and P-diffusion fins in a semiconductor substrate. A P-diffusion gate layer is formed over the semiconductor substrate and removed from the N-diffusion fins. A pass-gate N-diffusion gate layer is formed over the semiconductor substrate and removed from the P-diffusion fins and pull-down N-diffusion fins. A pull-down N-diffusion layer is formed over the semiconductor substrate.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 2, 2010
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Suman Datta, Jack Kavalieros, Brian S. Doyle, Uday Shah
  • Patent number: 7820512
    Abstract: In general, in one aspect, a method includes forming a semiconductor substrate having N-diffusion and P-diffusion regions. A gate stack is formed over the semiconductor substrate. A gate electrode hard mask is formed over the gate stack. The gate electrode hard mask is augmented around pass gate transistors with a spacer material. The gate stack is etched using the augmented gate electrode hard mask to form the gate electrodes. The gate electrodes around the pass gate have a greater length than other gate electrodes.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 26, 2010
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Suman Datta, Jack Kavalieros, Brian S. Doyle, Uday Shah
  • Publication number: 20100219456
    Abstract: In a metal gate replacement process, a stack of at least two polysilicon layers or other materials may be formed. Sidewall spacers may be formed on the stack. The stack may then be planarized. Next, the upper layer of the stack may be selectively removed. Then, the exposed portions of the sidewall spacers may be selectively removed. Finally, the lower portion of the stack may be removed to form a T-shaped trench which may be filled with the metal replacement.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 2, 2010
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Uday Shah, Robert S. Chau
  • Patent number: 7785958
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, a trench within the first dielectric layer, and a second dielectric layer on the substrate. The second dielectric layer has a first part that is formed in the trench and a second part. After a first metal layer with a first workfunction is formed on the first and second parts of the second dielectric layer, part of the first metal layer is converted into a second metal layer with a second workfunction.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: August 31, 2010
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Uday Shah, Matthew V. Metz, Suman Datta, Ramune Nagisetty, Robert S. Chau
  • Patent number: 7763943
    Abstract: Reducing external resistance of a multi-gate device by incorporation of a partial metallic fin is generally described. In one example, an apparatus includes a semiconductor substrate and one or more fins of a multi-gate transistor device coupled with the semiconductor substrate, the one or more fins having a gate region, a source region, and a drain region, the gate region being disposed between the source and drain regions where the gate region of the one or more fins includes a semiconductor material and where the source and drain regions of the one or more fins include a metal portion and a semiconductor portion, the metal portion and the semiconductor portion being coupled together.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: July 27, 2010
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Uday Shah, Titash Rakshit, Jack T. Kavalieros, Brian S. Doyle
  • Publication number: 20100163838
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yih Jin, Marko Radosavljevic, Willy Rachmady
  • Patent number: 7745270
    Abstract: In general, in one aspect, a method includes forming an n-diffusion fin and a p-diffusion fin in a semiconductor substrate. A high dielectric constant layer is formed over the substrate. A first work function metal layer is created over the n-diffusion fin and a second work function metal layer, thicker than the first, is created over the n-diffusion fin. A silicon germanium layer is formed over the first and second work function metal layers. A polysilicon layer is formed over the silicon germanium layer and is polished. The polysilicon layer over the first work function metal layer is thicker than the polysilicon layer over the second work function metal layer. A hard mask is patterned and used to etch the polysilicon layer and the silicon germanium layer to create gate stacks. The etch rate of the silicon germanium layer is faster over the first work function metal layer.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 29, 2010
    Assignee: Intel Corporation
    Inventors: Uday Shah, Brian S. Doyle, Jack T. Kavalieros, Been-Yih Jin
  • Patent number: 7718479
    Abstract: In a metal gate replacement process, a stack of at least two polysilicon layers or other materials may be formed. Sidewall spacers may be formed on the stack. The stack may then be planarized. Next, the upper layer of the stack may be selectively removed. Then, the exposed portions of the sidewall spacers may be selectively removed. Finally, the lower portion of the stack may be removed to form a T-shaped trench which may be filled with the metal replacement.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: May 18, 2010
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Uday Shah, Robert S. Chau
  • Patent number: 7709312
    Abstract: Methods for inducing compressive strain in channel region of a non-planar transistor and devices and systems formed by such methods. In one embodiment, a method can include forming trenches in a semiconductor body adjacent to gate structure spacers. The semiconductor body can be situated on a substrate and in a different plane relative to the substrate. The gate structure can be situated on the semiconductor body and the silicon fin and perpendicular to the semiconductor body. After formation of the semiconductor body and the gate structure on the substrate, a dielectric material can be conformally deposited on the substrate and etched to form spacers on the semiconductor body and the gate structure. The substrate can be patterned and etched to form trenches in the semiconductor body adjacent to the spacers on the gate structure. A strain material can be introduced into the trenches.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 4, 2010
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Brian Doyle, Uday Shah, Jack Kavalieros
  • Patent number: 7704835
    Abstract: A selective spacer for semiconductor and MEMS devices and method of manufacturing the same. In an embodiment, a selective spacer is formed adjacent to a first non-planar body having a greater sidewall height than a second non-planar semiconductor body in a self-aligned manner requiring no patterned etch operations. In a particular embodiment, a margin layer of a particular thickness is utilized to augment an existing structure and provide sufficient margin to protect a sidewall with a spacer that is first anisotropically defined and then isotropically defined. In another embodiment, the selective spacer formation prevents etch damage by terminating the anisotropic etch before a semiconductor surface is exposed.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 27, 2010
    Assignee: Intel Corporation
    Inventors: Rajwinder Singh, Willy Rachmady, Uday Shah, Jack T. Kavalieros
  • Patent number: 7700470
    Abstract: Embodiments of an apparatus and methods for providing a workfunction metal gate electrode on a substrate with doped metal oxide semiconductor structures are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 20, 2010
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Uday Shah, Jack T. Kavalieros, Brian S. Doyle
  • Patent number: 7671471
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 2, 2010
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Uday Shah, Chris E. Barns, Matthew V. Metz, Suman Datta, Annalisa Cappellani, Robert S. Chau
  • Patent number: 7666796
    Abstract: Some embodiments of the present invention include apparatuses and methods relating to improved substrate patterning for multi-gate transistors.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: February 23, 2010
    Assignee: Intel Corporation
    Inventors: Ibrahim Ban, Uday Shah, Allen B. Gardiner