Patents by Inventor Uwe Wahl

Uwe Wahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140231903
    Abstract: A super junction semiconductor device includes a semiconductor portion with parallel first and second surfaces. An impurity layer of a first conductivity type is formed in the semiconductor portion. Between the first surface and the impurity layer a super junction structure includes first columns of the first conductivity type and second columns of a second conductivity type. A sign of a compensation rate between the first and second columns may change along a vertical extension of the columns perpendicular to the first surface. A body zone of the second conductivity type is formed between the first surface and one of the second columns. A field extension zone of the second conductivity type may be electrically connected to the body zone or a field extension zone of the first conductivity type may be connected to the impurity layer. The field extension zone improves the avalanche characteristics of the semiconductor device.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Uwe Wahl
  • Publication number: 20140231909
    Abstract: In a semiconductor substrate with a first surface and a working surface parallel to the first surface, columnar first and second super junction regions of a first and a second conductivity type are formed. The first and second super junction regions extend in a direction perpendicular to the first surface and form a super junction structure. The semiconductor portion is thinned such that, after the thinning, a distance between the first super junction regions having the second conductivity type and a second surface obtained from the working surface does not exceed 30 ?m. Impurities are implanted into the second surface to form one or more implanted zones. The embodiments combine super junction approaches with backside implants enabled by thin wafer technology.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20140231910
    Abstract: A super junction semiconductor device includes a semiconductor portion with a first surface and a parallel second surface. A doped layer of a first conductivity type is formed at least in a cell area. Columnar first super junction regions of a second, opposite conductivity type extend in a direction perpendicular to the first surface. Columnar second super junction regions of the first conductivity type separate the first super junction regions from each other. The first and second super junction regions form a super junction structure between the first surface and the doped layer. A distance between the first super junction regions and the second surface does not exceed 30 ?m. The on-state or forward resistance of low-voltage devices rated for reverse breakdown voltages below 1000 V can be defined by the resistance of the super junction structure.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20140231928
    Abstract: A semiconductor device includes a semiconductor layer with a super junction structure including first columns of a first conductivity type and second columns of a second conductivity type opposite the first conductivity type. The super junction structure is formed in a cell area and in an inner portion of an edge area surrounding the cell area. In the inner portion of the edge area a reverse blocking capability is locally reduced by a local modification of the semiconductor layer. The local modification allows an electric field to extend in case an avalanche breakdown occurs. The reverse blocking capability is locally reduced in the edge area, wherein once an avalanche breakdown has been triggered the semiconductor device accommodates a higher reverse voltage. Avalanche ruggedness is improved.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Uwe Wahl
  • Patent number: 8790985
    Abstract: The disclosed invention provides a structure and method for providing a high lateral voltage resistance between the electrical networks, sharing a lateral plane, of conductive elements (e.g., having different high voltage potentials) comprising a coupler. In one embodiment, an integrated coupler providing a high lateral voltage resistance comprises a primary conductive element and a secondary conductive element. An isolating material is laterally configured between the electrical network of the primary conductive element and an electrical network of the secondary conductive element. The isolating material may comprise a low-k dielectric layer and prevents any lateral barrier layers (e.g., etch stop layers, diffusion barrier layers, etc.) from extending between the first conductive element and the electrical network of the second conductive element. The structure therefore provides a galvanically isolated integrated coupler which avoids electrical shorting between circuits (e.g.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 29, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Uwe Wahl, Markus Hammer, Jens-Peer Stengl
  • Patent number: 8754468
    Abstract: A lateral power semiconductor component has a front side, a rear side and a lateral edge. The component further includes a drift zone of a first conductivity type, a source zone of the first conductivity type, a body zone of a second conductivity type opposite the first conductivity type, and a drain zone of the first conductivity type. A gate forms a MOS structure with the drift zone, the source zone and the body zone. A horizontally extending field plate above each semiconductor region of the power semiconductor component forms a plate capacitor structure with an edge plate lying under the field plate. The edge plate includes a highly doped semiconductor material and is electrically connected to one of a source potential and a drain potential of the power semiconductor component.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: June 17, 2014
    Inventors: Uwe Wahl, Armin Willmeroth
  • Publication number: 20140159220
    Abstract: A semiconductor device, a method of manufacturing a semiconductor device and a method for transmitting a signal are disclosed. In accordance with an embodiment of the present invention, the semiconductor device comprises a first semiconductor chip comprising a first coil, a second semiconductor chip comprising a second coil inductively coupled to the first coil, and an isolating intermediate layer between the first semiconductor chip and the second semiconductor chip.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Applicant: Infineon Technologies AG
    Inventors: Stefan Willkofer, Uwe Wahl, Bernhard Knott, Markus Hammer, Andreas Strasser
  • Patent number: 8674800
    Abstract: A semiconductor device, a method of manufacturing a semiconductor device and a method for transmitting a signal are disclosed. In accordance with an embodiment of the present invention, the semiconductor device comprises a first semiconductor chip comprising a first coil, a second semiconductor chip comprising a second coil inductively coupled to the first coil, and an isolating intermediate layer between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 18, 2014
    Assignee: Infineon Technologies AG
    Inventors: Stefan Willkofer, Uwe Wahl, Bernhard Knott, Markus Hammer, Andreas Strasser
  • Publication number: 20140001552
    Abstract: A drift layer of a super junction semiconductor device includes first portions of a first conductivity type and second portions of a second conductivity type opposite to the first conductivity type. The first and second portions are formed both in a cell area and in an edge area surrounding the cell area, wherein an on-state or forward current through the drift layer flows through the first portions in the cell area. At least one of the first and second portions other than the first portions in the cell area includes an auxiliary structure or contains auxiliary impurities to locally reduce the avalanche rate. Locally reducing the avalanche rate increases the total voltage blocking capability of the super junction semiconductor device.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Hans Weber, Hans-Joachim Schulze, Uwe Wahl
  • Patent number: 8614616
    Abstract: A semiconductor device, a method of manufacturing a semiconductor device and a method for transmitting a signal are disclosed. In accordance with an embodiment of the present invention, the semiconductor device comprises a first semiconductor chip comprising a first coil, a second semiconductor chip comprising a second coil inductively coupled to the first coil, and an isolating intermediate layer between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: December 24, 2013
    Assignee: Infineon Technologies AG
    Inventors: Stefan Willkofer, Uwe Wahl, Bernhard Knott, Markus Hammer, Andreas Strasser
  • Publication number: 20130328166
    Abstract: A semiconductor device, a method of manufacturing a semiconductor device and a method for transmitting a signal are disclosed. In accordance with an embodiment of the present invention, the semiconductor device comprises a first semiconductor chip comprising a first coil, a second semiconductor chip comprising a second coil inductively coupled to the first coil, and an isolating intermediate layer between the first semiconductor chip and the second semiconductor chip.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Infineon Technologies AG
    Inventors: Stefan Willkofer, Uwe Wahl, Bernhard Knott, Markus Hammer, Andreas Strasser
  • Publication number: 20130307058
    Abstract: A semiconductor device includes a semiconductor body having a first surface and a second surface opposite to the first surface. A superjunction structure in the semiconductor body includes drift regions of a first conductivity type and compensation structures alternately disposed in a first direction parallel to the first surface. Each of the charge compensation structures includes a first semiconductor region of a second conductivity type complementary to the first conductivity type and a first trench including a second semiconductor region of the second conductivity type adjoining the first semiconductor region. The first semiconductor region and the first trench are disposed one after another in a second direction perpendicular to the first surface.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Uwe Wahl, Franz Hirler, Hans Weber
  • Publication number: 20130249602
    Abstract: A semiconductor arrangement includes a semiconductor body and a power transistor including a source region, a drain region, a body region and a drift region arranged in the semiconductor body, a gate electrode arranged adjacent to the body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement further includes a high voltage device arranged within a well-like dielectric structure in the semiconductor body and comprising a further drift region.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Franz Hirler, Joachim Weyers, Uwe Wahl
  • Patent number: 8431988
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 30, 2013
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schäffer
  • Patent number: 8410575
    Abstract: High voltage semiconductor devices and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming first trenches in an insulating material. A trap region is formed in the insulating material by introducing an impurity into the first trenches. The first trenches are filled with a conductive material.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 2, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Kerber, Uwe Wahl
  • Patent number: 8319573
    Abstract: A signal transmission arrangement includes input terminals for receiving an input signal and output terminals for providing an output signal. A first transformer has a primary winding and a secondary winding, the primary winding being coupled to the input terminals. A second transformer has a primary winding and a secondary winding, the primary winding being coupled to the secondary winding of the first transformer, and the secondary winding being coupled to the output terminals.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 27, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Peter Kanschat, Uwe Wahl, Marcus Nuebling, Jens-Peer Stengl
  • Publication number: 20120273917
    Abstract: The disclosed invention provides a structure and method for providing a high lateral voltage resistance between the electrical networks, sharing a lateral plane, of conductive elements (e.g., having different high voltage potentials) comprising a coupler. In one embodiment, an integrated coupler providing a high lateral voltage resistance comprises a primary conductive element and a secondary conductive element. An isolating material is laterally configured between the electrical network of the primary conductive element and an electrical network of the secondary conductive element. The isolating material may comprise a low-k dielectric layer and prevents any lateral barrier layers (e.g., etch stop layers, diffusion barrier layers, etc.) from extending between the first conductive element and the electrical network of the second conductive element. The structure therefore provides a galvanically isolated integrated coupler which avoids electrical shorting between circuits (e.g.
    Type: Application
    Filed: June 29, 2012
    Publication date: November 1, 2012
    Applicant: Infineon Technologies Austria AG
    Inventors: Uwe Wahl, Markus Hammer, Jens-Peer Stengl
  • Patent number: 8278730
    Abstract: The disclosed invention provides a structure and method for providing a high lateral voltage resistance between the electrical networks, sharing a lateral plane, of conductive elements (e.g., having different high voltage potentials) comprising a coupler. In one embodiment, an integrated coupler providing a high lateral voltage resistance comprises a primary conductive element and a secondary conductive element. An isolating material is laterally configured between the electrical network of the primary conductive element and an electrical network of the secondary conductive element. The isolating material may comprise a low-k dielectric layer and prevents any lateral barrier layers (e.g., etch stop layers, diffusion barrier layers, etc.) from extending between the first conductive element and the electrical network of the second conductive element. The structure therefore provides a galvanically isolated integrated coupler which avoids electrical shorting between circuits (e.g.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 2, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Uwe Wahl, Markus Hammer, Jens-Peer Stengl
  • Patent number: 8258573
    Abstract: A semiconductor component includes a body with a drift zone, a source zone, a body zone, and a drain zone. A gate forms a MOS structure with the drift zone, with the source zone and with the body zone. An edge termination between the lateral edge and the MOS structure includes a plurality of field rings which enclose the MOS structure. The lateral edge is at the same potential as the drift zone, and the edge termination reduces voltage between the lateral edge and the source zone. A horizontally extending edge plate is disposed at the front side between the lateral edge and the edge termination. The edge plate is at the same potential as the drift zone and forms a plate capacitor structure including a field plate lying above the edge plate.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 4, 2012
    Assignee: Infineon Technologies AG
    Inventors: Uwe Wahl, Armin Willmeroth
  • Publication number: 20120181874
    Abstract: A semiconductor device, a method of manufacturing a semiconductor device and a method for transmitting a signal are disclosed. In accordance with an embodiment of the present invention, the semiconductor device comprises a first semiconductor chip comprising a first coil, a second semiconductor chip comprising a second coil inductively coupled to the first coil, and an isolating intermediate layer between the first semiconductor chip and the second semiconductor chip.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 19, 2012
    Inventors: Stefan Willkofer, Uwe Wahl, Bernhard Knott, Markus Hammer, Andreas Strasser