Patents by Inventor Vivek R.

Vivek R. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200066560
    Abstract: A method of purging a substrate carrier at a load port includes: opening a door of a substrate carrier that is delivered to a load port; spraying the substrate carrier with a gas flow responsive to the opening the door; mapping substrates within the substrate carrier to generate a substrate map; determining a process purge state based on the substrate map; and activating one or more inter-substrate nozzle arrays and one or more curtain nozzle arrays using a predefined spray status configuration for the process purge state.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: Subramaniam V. Iyer, Dharma Ratnam Srichurnam, Devendrappa Holeyannavar, Douglas MacLeod, Kenneth Carpenter, Naveen Kumar, Vivek R. Rao, Patrick Pannese
  • Patent number: 10520372
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 31, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Publication number: 20190384844
    Abstract: Systems, methods, and computer-executable instructions for creating a query execution plan for a query of a database includes receiving, from the database, a set of previously executed query execution plans for the query. Each previously-executed query execution plans includes subplans. Each subplan indicates a tree of physical operators. Physical operators that executed in the set of previously-executed query execution plans are determined. For each physical operator, an execution cost based is determined. Invalid physical operators from the previously-executed query execution plans that are invalid for the database are removed. Equivalent subplans from the previously-executed query execution plans are identified based on physical properties and logical expressions of the subplans. A constrained search space is created based on the equivalent subplans. A query execution plan for the query is constructed from the constrained search space based on the execution cost.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, Vivek R. Narasayya
  • Publication number: 20190384830
    Abstract: Generally discussed herein are devices, systems, and methods for database management. A method may include determining a first hyperloglog (HLL) sketch of a first column of data, determining a second HLL sketch of a second column of data, estimating an inclusion coefficient based on the first and second HLL sketches, and performing operations on the first column of data or the second column of data in response to determining the inclusion coefficient is greater than, or equal to, a specified threshold.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Azade Nazi, Bolin Ding, Vivek R. Narasayya, Surajit Chaudhuri
  • Patent number: 10510570
    Abstract: Embodiments of the present invention provide systems, apparatus, and methods for purging a substrate carrier. Embodiments include a frame configured to sit proximate to a load port door without interfering with operation of a factory interface or equipment front end module robot; one or more inter-substrate nozzle arrays supported by the frame and configured to spray gas into a substrate carrier; and one or more curtain nozzle arrays supported by the frame and configured to spray gas across an opening of the substrate carrier. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 17, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Subramaniam V. Iyer, Dharma Ratnam Srichurnam, Devendrappa Holeyannavar, Douglas MacLeod, Kenneth Carpenter, Naveen Kumar, Vivek R. Rao, Patrick Pannese
  • Patent number: 10503704
    Abstract: Techniques for tenant performance isolation in a multiple-tenant database management system are described. These techniques may include providing a reservation of server resources. The server resources reservation may include a reservation of a central processing unit (CPU), a reservation of Input/Ouput throughput, and/or a reservation of buffer pool memory or working memory. The techniques may also include a metering mechanism that determines whether the resource reservation is satisfied. The metering mechanism may be independent of an actual resource allocation mechanism associated with the server resource reservation.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 10, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Vivek R. Narasayya, Sudipto Das, Feng Li, Manoj A. Syamala, Hyunjung Park, Surajit Chaudhuri, Badrish Chandramouli
  • Patent number: 10479020
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 19, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Publication number: 20190323903
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Application
    Filed: June 7, 2019
    Publication date: October 24, 2019
    Applicant: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Publication number: 20190255654
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensing system that monitors two discrete wavelengths associated with a blackbody radiation curve of the layer of powder; determining temperature variations for an area of the build plane traversed by the scans based upon a ratio of sensor readings taken at the two discrete wavelengths; determining that the temperature variations are outside a threshold range of values; and thereafter, adjusting subsequent scans of the energy source across or proximate the area of the build plane.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 22, 2019
    Applicant: Sigma Labs, Inc.
    Inventors: Darren Beckett, Scott Betts, Martin Piltch, R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Alberto M. Castro, Roger Frye
  • Publication number: 20190210353
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 11, 2019
    Applicant: Sigma Labs, Inc.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Patent number: 10317294
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 11, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Patent number: 10303646
    Abstract: A server system may include a cluster of multiple computers that are networked for high-speed data communications. Each of the computers has a remote direct memory access (RDMA) network interface to allow high-speed memory sharing between computers. A relational database engine of each computer is configured to utilize a hierarchy of memory for temporary storage of working data, including in order of decreasing access speed (a) local main memory, (b) remote memory accessed via RDMS, and (c) mass storage. The database engine uses the local main memory for working data, and additionally uses the RDMA accessible memory for working data when the local main memory becomes depleted. The server system may include a memory broker to which individual computers report their available or unused memory, and which leases shared memory to requesting computers.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: May 28, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sudipto Das, Feng Li, Manoj A. Syamala, Vivek R. Narasayya
  • Publication number: 20190143413
    Abstract: Various ways in which material property variations of raw materials used in additive manufacturing can be identified and accounted for are described. In some embodiments, the raw material can take the form of powdered metal. The powdered metal can have any number of variations including the following: particle size variation, contamination, particle composition and particle shape. Prior to utilizing the powders in an additive manufacturing operation, the powders can be inspected for variations. Variations and inconsistencies in the powder can also be identified by monitoring an additive manufacturing with one or more sensors. In some embodiments, the additive manufacturing process can be adjusted in real-time to adjust for inconsistencies in the powdered metal.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Applicant: Sigma Labs, Inc.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Publication number: 20190134754
    Abstract: This disclosure describes an additive manufacturing method that includes monitoring a temperature of a portion of a build plane during an additive manufacturing operation using a temperature sensor as a heat source passes through the portion of the build plane; detecting a peak temperature associated with one or more passes of the heat source through the portion of the build plane; determining a threshold temperature by reducing the peak temperature by a predetermined amount; identifying a time interval during which the monitored temperature exceeds the threshold temperature; identifying, using the time interval, a change in manufacturing conditions likely to result in a manufacturing defect; and changing a process parameter of the heat source in response to the change in manufacturing conditions.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: SIGMA LABS, INC.
    Inventors: Lars Jacquemetton, Vivek R. Dave, Mark J. Cola, Glenn Wikle, R. Bruce Madigan
  • Publication number: 20190134709
    Abstract: A system and a corresponding method of correcting temperature data from a non-imaging optical sensor involve collecting temperature data generated using the optical sensor. The temperature data describes temperature changes across a surface of a material during an additive manufacturing operation in which the material is heated by a heat source. The method includes estimating a size of a hot spot corresponding to a hottest region formed on the surface by the heat source; and estimating a size of a heated region corresponding to a locus of points within the field of view that contribute to the temperature data. The method further includes correcting the temperature data based on the estimated sizes of the hot spot and the heated region.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Publication number: 20190132264
    Abstract: Method and system are provided for generating a chatbot interface for an application programming interface (API) that interacts with networked applications. The method may include: receiving as an input a definition document for an API that interacts with networked applications and parsing the definition document to identify intents and entities and obtain examples of the identified intents and entities. The method may convert the definition document to a chatbot data structure including: extracting the intents and entities and their relationship to objects and fields in the API from the definition document; and training the chatbot data structure with the example intents and entities to generate a conversation specification in the chatbot data structure. The method may then generate a chatbot interface for the API.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Hisham Jafar Ali, Matthew J. Kempa, Aaquib Naved, Robert B. Nicholson, Vivek R. Shah, Paul S.M. Thorpe, Syed Akhass Adnan Wasti
  • Publication number: 20190080006
    Abstract: The present invention extends to methods, systems, and computer program products for computing features of structured data. Aspects of the invention include computing features of table components (e.g., of rows, columns, cells, etc.). Computed features can be used for ranking the table components. When aggregated, features for different components of a table can be used for ranking the table (e.g., a web table).
    Type: Application
    Filed: November 12, 2018
    Publication date: March 14, 2019
    Inventors: Kanstantsyn ZORYN, Zhimin CHEN, Kaushik CHAKRABARTI, James P. FINNIGAN, Vivek R. NARASAYYA, Surajit CHAUDHURI, Kris GANJAM
  • Patent number: 10226817
    Abstract: Various ways in which material property variations of raw materials used in additive manufacturing can be identified and accounted for are described. In some embodiments, the raw material can take the form of powdered metal. The powdered metal can have any number of variations including the following: particle size variation, contamination, particle composition and particle shape. Prior to utilizing the powders in an additive manufacturing operation, the powders can be inspected for variations. Variations and inconsistencies in the powder can also be identified by monitoring an additive manufacturing with one or more sensors. In some embodiments, the additive manufacturing process can be adjusted in real-time to adjust for inconsistencies in the powdered metal.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: March 12, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola
  • Patent number: 10207489
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 19, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Publication number: 20190039318
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 7, 2019
    Applicant: Sigma Labs, Inc.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro