Patents by Inventor Volume Chien

Volume Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140367820
    Abstract: A photodiode structure includes a photodiode and a concave reflector disposed below the photodiode. The concave reflector is arranged to reflect incident light from above back toward the photodiode.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 18, 2014
    Inventors: Che-Min Lin, Volume Chien, Chih-Kang Chao, Chi-Cherng Jeng, Pin Chia Su, Chih-Mu Huang
  • Patent number: 8884390
    Abstract: A die includes a first plurality of edges, and a semiconductor substrate in the die. The semiconductor substrate includes a first portion including a second plurality of edges misaligned with respective ones of the first plurality of edges. The semiconductor substrate further includes a second portion extending from one of the second plurality of edges to one of the first plurality of edges of the die. The second portion includes a first end connected to the one of the second plurality of edges, and a second end having an edge aligned to the one of the first plurality of edges of the die.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-I Cheng, Chih-Kang Chao, Volume Chien, Chi-Cherng Jeng, Pin Chia Su, Chih-Mu Huang
  • Publication number: 20140268609
    Abstract: Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Yun-Wei Cheng, I-l Cheng, Shiu-Ko JangJiang, Chi-Cherng Jeng, Chih-Mu Huang
  • Publication number: 20140264710
    Abstract: Seal ring structures are provided with rounded corner junctions or corner junctions that include polygons. The seal rings surround generally rectangular semiconductor devices such as integrated circuits, image sensors and other devices. The seal ring includes a configuration of two sets of generally parallel opposed sides and the corner junctions are the junctions at which adjacent orthogonal seal ring sides are joined. The seal rings are trench structures or filled trench structures in various embodiments. The rounded corner junctions are formed by a curved arc or multiple line segments joined together at various angles. The corner junctions that include one or more enclosed polygons include polygons with at least one polygon side being formed by one of the seal ring sides.
    Type: Application
    Filed: January 29, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Volume Chien, Yun-Wei Cheng, I-I Cheng, Shiu-Ko Jangjian, Chi-Cherng Jeng, Hsin-Chi Chen
  • Publication number: 20140264687
    Abstract: Among other things, one or more image sensors and techniques for forming such image sensors are provided. An image sensor comprises a photodiode array configured to detect light. A filler grid is formed over the photodiode array, such as over a dielectric grid. The filler grid comprises one or more filler structures, such as a first filler structure that provides a light propagation path to a first photodiode that is primarily through the first filler structure. In this way, signal strength decay of light along the light propagation path before detection by the first photodiode is mitigated. The image sensor comprises a reflective layer that channels light towards corresponding photodiodes. For example, a first reflective layer portion guides light towards the first photodiode and away from a second photodiode. In this way, crosstalk, otherwise resulting from detection of light by incorrect photodiodes, is mitigated.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Feng-Chien Hsieh, Shih-Ciang Huang, Volume Chien, Zhe-Ju Liu, Wang Chun-Ying, Chi-Chemg Jeng, Chen Hsin-Chi
  • Publication number: 20140264696
    Abstract: Among other things, one or more image sensors and techniques for forming such image sensors are provided. An image sensor comprises a photodiode array configured to detect light. The image sensor comprises a calibration region configured to detect a color level for image reproduction, such as a black calibration region configured to detect a black level for an image detected by the photodiode array. The image sensor comprises a dielectric film that is formed over the photodiode array and the calibration region. The dielectric film is configured to balance stress between the photodiode and the calibration region in order to improve accuracy of the calibration region.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Che-Min Lin, Shiu-Ko JangJian, Chi-Cherng Jeng, Chih-Mu Huang
  • Patent number: 8816415
    Abstract: A photodiode structure includes a photodiode and a concave reflector disposed below the photodiode. The concave reflector is arranged to reflect incident light from above back toward the photodiode.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Che-Min Lin, Volume Chien, Chih-Kang Chao, Chi-Cherng Jeng, Pin Chia Su, Chih-Mu Huang
  • Publication number: 20140225215
    Abstract: A bonding pad structure for an image sensor device and a method of fabrication thereof. The image sensor device has a radiation-sensor region including a substrate and a radiation detection device, and a bonding pad region including the bonding pad structure. The bonding pad structure includes: an interconnect layer; an interlayer dielectric layer (IDL), both layers extending from under the substrate into the bonding pad region; an isolation layer formed on IDL; a conductive pad having a planar portion and one or more bridging portions extending perpendicularly from the planar portion, through the IDL and isolation layers, and to the interconnect layer; and a plurality of non-conducting stress-releasing structures disposed between the isolation layer and the conductive pad in such a way to adjoin its planar and the bridging portions together for releasing potential pulling stress applied thereon and preventing a conductive pad peeling.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: VOLUME CHIEN, Chen I-Chih, Ying-Lang Wang, Chen Hsin-Chi, Chen Ying-Hao, Huang-Ta Huang
  • Publication number: 20140210029
    Abstract: A die includes a first plurality of edges, and a semiconductor substrate in the die. The semiconductor substrate includes a first portion including a second plurality of edges misaligned with respective ones of the first plurality of edges. The semiconductor substrate further includes a second portion extending from one of the second plurality of edges to one of the first plurality of edges of the die. The second portion includes a first end connected to the one of the second plurality of edges, and a second end having an edge aligned to the one of the first plurality of edges of the die.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-I Cheng, Chih-Kang Chao, Volume Chien, Chi-Cherng Jeng, Pin Chia Su, Chih-Mu Huang
  • Publication number: 20140167197
    Abstract: A backside illumination image sensor structure comprises an image sensor formed adjacent to a first side of a semiconductor substrate, wherein an interconnect layer is formed over the first side of the semiconductor substrate, a backside illumination film formed over a second side of the semiconductor substrate, a metal shielding layer formed over the backside illumination film and a via embedded in the backside illumination film and coupled between the metal shielding layer and the semiconductor substrate.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shiu-Ko JangJian, Chi-Cherng Jeng, Volume Chien, Ying-Lang Wang
  • Publication number: 20140106498
    Abstract: A method of creating a reflective shield for an image sensor device includes depositing a first dielectric layer on a substrate, wherein a photodiode is on the substrate. The method further includes removing surface topography by performing chemical mechanical polishing (CMP) on the first dielectric layer. The method further includes patterning the substrate to define an area on a surface of the first dielectric layer, wherein the area is directly above the photodiode. The method further includes depositing a layer of a material with high reflectivity on the substrate, wherein the material fills the area on the surface of the first dielectric layer. The method further includes removing excess material with high reflectivity, wherein the reflective shield is formed and is embedded in the first dielectric layer. The method further includes depositing a second dielectric material on the substrate, wherein the second dielectric material covers the reflective shield.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTUTING COMPANY, LTD.
    Inventors: Yu-Hao SHIH, Szu-Ying CHEN, Hsing-Lung CHEN, Jen-Cheng LIU, Dun-Nian YAUNG, Volume CHIEN
  • Publication number: 20140070352
    Abstract: An embodiment semiconductor device includes a substrate such as a silicon or silicon-containing film, a pixel array supported by the substrate, and a metal stress release feature arranged around a periphery of the pixel array. The metal stress release feature may be formed from metal strips or discrete metal elements. The metal stress release feature may be arranged in a stress release pattern that uses a single line or a plurality of lines. The metal stress release pattern may also use metal corner elements at ends of the lines.
    Type: Application
    Filed: December 7, 2012
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Han Tsai, Allen Tseng, Yen-Hsung Ho, Chun-Hao Chou, Kuo-Cheng Lee, Volume Chien, Chi-Cherng Jeng
  • Patent number: 8629523
    Abstract: The structures of reflective shields and methods of making such structures described enable reflection of light that has not be absorbed by photodiodes in image sensor devices and increase quantum efficiency of the photodiodes. Such structures can be applied (or used) for any image sensors to improve image quality. Such structures are particular useful for image sensors with smaller pixel sizes and for long-wavelength light (or rays), whose absorption length (or depth) could be insufficient, especially for backside illumination (BSI) devices. The reflective shields could double, or more than double, the absorption depth for light passing through the image sensors and getting reflected back to the photodiodes. Concave-shaped reflective shields have the additional advantage of directing reflected light toward the image sensors.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hao Shih, Szu-Ying Chen, Hsing-Lung Chen, Jen-Cheng Liu, Dun-Nian Yaung, Volume Chien
  • Publication number: 20130256893
    Abstract: A bonding pad structure includes a substrate and a first conductive island formed in a first dielectric layer and disposed over the substrate. A first via array having a plurality of vias is formed in a second dielectric layer and disposed over the first conductive island. A second conductive island is formed in a third dielectric layer and disposed over the first via array. A bonding pad is disposed over the second conductive island. The first conductive island, the first via array, and the second conductive island are electrically connected to the bonding pad. The first via array is connected to no other conductive island in the first dielectric layer except the first conductive island. No other conductive island in the third dielectric layer is connected to the first via array except the second conductive island.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Han TSAI, Jung-Chi JENG, Yueh-Ching CHANG, Volume CHIEN, Huang-Ta HUANG, Chi-Cherng JENG
  • Publication number: 20130149807
    Abstract: A backside illuminated CMOS image sensor comprises a photo active region formed over a substrate using a front side ion implantation process and an extended photo active region formed adjacent to the photo active region, wherein the extended photo active region is formed by using a backside ion implantation process. The backside illuminated CMOS image sensor may further comprise a laser annealed layer on the backside of the substrate. The extended photo active region helps to increase the number of photons converted into electrons so as to improve quantum efficiency.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 13, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Volume Chien, Szu-An Wu
  • Publication number: 20110254115
    Abstract: The structures of reflective shields and methods of making such structures described enable reflection of light that has not be absorbed by photodiodes in image sensor devices and increase quantum efficiency of the photodiodes. Such structures can be applied (or used) for any image sensors to improve image quality. Such structures are particular useful for image sensors with smaller pixel sizes and for long-wavelength light (or rays), whose absorption length (or depth) could be insufficient, especially for backside illumination (BSI) devices. The reflective shields could double, or more than double, the absorption depth for light passing through the image sensors and getting reflected back to the photodiodes. Concave-shaped reflective shields have the additional advantage of directing reflected light toward the image sensors.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao SHIH, Szu-Ying CHEN, Hsing-Lung CHEN, Jen-Cheng LIU, Dun-Nian YAUNG, Volume CHIEN
  • Publication number: 20100252870
    Abstract: Embodiments of the invention relate to dual shallow trench isolations (STI). In various embodiments related to CMOS Image Sensor (CIS) technologies, the dual STI refers to one STI structure in the pixel region and another STI structure in the periphery or logic region. The depth of each STI structure depends on the need and/or isolation tolerance of devices in each region. In an embodiment, the pixel region uses NMOS devices and the STI in this region is shallower than that of in the periphery region that includes both NMOS and PMOS device having different P- and N-wells and that desire more protective isolation (i.e., deeper STI). Depending on implementations, different numbers of masks (e.g., two, three) are used to generate the dual STI, and are disclosed in various method embodiments.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 7, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jeng-Shyan LIN, Dun-Nian YAUNG, Jen-Cheng LIU, Chun-Chieh CHUANG, Volume CHIEN
  • Publication number: 20070082581
    Abstract: A system of process control is provided. The system comprises a first processing tool, a first sensor, a second processing tool, and a processor. The first processing tool processes a first workpiece. The first sensor provides real-time monitoring (RTM) data of the first processing tool while processing the first workpiece. The second processing tool processes the first workpiece subsequent to the first processing tool. The processor adjusts, according to the real-time monitoring data and a preset program, the first processing tool for processing a second workpiece, and the second processing tool for processing the first workpiece.
    Type: Application
    Filed: October 7, 2005
    Publication date: April 12, 2007
    Inventors: Volume Chien, Chyi-Shyuan Chern, Yu Yuan Kuo, Ming-Te Mo
  • Patent number: 7195537
    Abstract: A system of process control is provided. The system comprises a first processing tool, a first sensor, a second processing tool, and a processor. The first processing tool processes a first workpiece. The first sensor provides real-time monitoring (RTM) data of the first processing tool while processing the first workpiece. The second processing tool processes the first workpiece subsequent to the first processing tool. The processor adjusts, according to the real-time monitoring data and a preset program, the first processing tool for processing a second workpiece, and the second processing tool for processing the first workpiece.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Volume Chien, Chyi-Shyuan Chern, Yu Yuan Kuo, Ming-Te Mo
  • Patent number: 6863796
    Abstract: A method for cleaning an electrodeposition surface following an electroplating process including providing a process surface including electro-chemically deposited metal following an electrodeposition process; and, cleaning the process surface with a sulfuric acidic cleaning solution to remove electrodeposited metal particles according to at least one of an immersion and spraying process the spraying process including simultaneously rotating the process surface.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: March 8, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chia-Liang Chueh, Volume Chien, Shih-Ming Wang