Patents by Inventor Wei Jen

Wei Jen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134147
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 25, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Patent number: 11968038
    Abstract: Disclosed are systems, methods, and non-transitory computer-readable storage media for monitoring application health via correctable errors. The method includes identifying, by a network device, a network packet associated with an application and detecting an error associated with the network packet. In response to detecting the error, the network device increments a counter associated with the application, determines an application score based at least in part on the counter, and telemeters the application score to a controller. The controller can generate a graphical interface based at least in part on the application score and a timestamp associated with the application score, wherein the graphical interface depicts a trend in correctable errors experienced by the application over a network.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Cisco Technology, Inc.
    Inventors: Keerthi Manjunathan Swarnamanjunathan, Chih-Tsung Huang, Kelvin Chan, Wei-Jen Huang
  • Patent number: 11968206
    Abstract: A mechanism for building decentralized computer applications that execute on a distributed computing system. The present technology works within a web browser, client application, or other software and provides access to decentralized computer applications through the browser. The present technology is non-custodial, wherein a public-private key pair, which represents user identity, is created on a client machine and then directly encrypted by a third-party platform without relying on one centralized computing system.
    Type: Grant
    Filed: September 15, 2023
    Date of Patent: April 23, 2024
    Assignee: Magic Labs, Inc.
    Inventors: Fei-Yang Jen, Yi Wei Chen, Jaemin Jin, Hanyu Xue, Wentao Liu, Shang Li
  • Publication number: 20240128149
    Abstract: Some implementations described herein include systems and techniques for fabricating a semiconductor die package that includes a cooling interface region formed in surface of an integrated circuit die. The cooling interface region, which includes a combination of channel regions and pillar structures, may be directly exposed to a fluid above and/or around the semiconductor die package.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 18, 2024
    Inventors: Cheng-Chieh HSIEH, Wei-Kong SHENG, Ke-Han SHEN, Yu-Jen LIEN
  • Patent number: 11961919
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate, where a top portion of the fin comprises a layer stack that includes alternating layers of a first semiconductor material and a second semiconductor material; forming a dummy gate structure over the fin; forming openings in the fin on opposing sides of the dummy gate structure; forming source/drain regions in the openings; removing the dummy gate structure to expose the first semiconductor material and the second semiconductor material under the dummy gate structure; performing a first etching process to selectively remove the exposed first semiconductor material, where after the first etching process, the exposed second semiconductor material form nanostructures, where each of the nanostructures has a first shape; and after the first etching process, performing a second etching process to reshape each of the nanostructures into a second shape different from the first shape.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chung Chang, Hsiu-Hao Tsao, Ming-Jhe Sie, Shun-Hui Yang, Chen-Huang Huang, An Chyi Wei, Ryan Chia-Jen Chen
  • Patent number: 11961808
    Abstract: At least some embodiments of the present disclosure relate to an electronic package structure. The electronic package structure includes an electronic structure, a wiring structure disposed over the electronic structure, a bonding element connecting the wiring structure and the electronic structure, and a reinforcement element attached to the wiring structure. An elevation difference between a highest point and a lowest point of a surface of the wiring structure facing the electronic structure is less than a height of the bonding element.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: April 16, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wei-Jen Wang, Po-Jen Cheng, Fu-Yuan Chen, Yi-Hsin Cheng
  • Publication number: 20240120388
    Abstract: Provided are structures and methods for forming structures with sloping surfaces of a desired profile. An exemplary method includes performing a first etch process to differentially etch a gate material to a recessed surface, wherein the recessed surface includes a first horn at a first edge, a second horn at a second edge, and a valley located between the first horn and the second horn; depositing an etch-retarding layer over the recessed surface, wherein the etch-retarding layer has a central region over the valley and has edge regions over the horns, and wherein the central region of the etch-retarding layer is thicker than the edge regions of the etch-retarding layer; and performing a second etch process to recess the horns to establish the gate material with a desired profile.
    Type: Application
    Filed: January 18, 2023
    Publication date: April 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Jih-Sheng Yang, Shih-Chieh Chao, Chia Ming Liang, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Patent number: 11955547
    Abstract: An integrated circuit device includes a gate stack disposed over a substrate. A first L-shaped spacer is disposed along a first sidewall of the gate stack and a second L-shaped spacer is disposed along a second sidewall of the gate stack. The first L-shaped spacer and the second L-shaped spacer include silicon and carbon. A first source/drain epitaxy region and a second source/drain epitaxy region are disposed over the substrate. The gate stack is disposed between the first source/drain epitaxy region and the second source/drain epitaxy region. An interlevel dielectric (ILD) layer disposed over the substrate. The ILD layer is disposed between the first source/drain epitaxy region and a portion of the first L-shaped spacer disposed along the first sidewall of the gate stack and between the second source/drain epitaxy region and a portion of the second L-shaped spacer disposed along the second sidewall of the gate stack.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 11955807
    Abstract: A rigid wireless charging mouse pad includes a rigid board layer, a double-sided adhesive plate and a coil. The underside of the rigid board layer has a single-ring groove with an inner top groove wall. The double-sided adhesive plate is adhered to the inner top groove wall. The coil has surrounding rings arranged side by side with one another to form a coil module which is stacked on the double-sided adhesive plate in the single-ring groove and adhered by the double-sided adhesive plate to achieve a wireless charging effect by the mouse pad in the condition of having only one single-ring groove on the rigid board layer, so as to achieve the effects of reducing manufacturing difficulty, lowering manufacturing cost, and improving market competitiveness.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: April 9, 2024
    Assignee: YUHONG ELECTRONIC (SHENZHEN) CO., LTD.
    Inventor: Wei-Jen Liang
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240106737
    Abstract: The present technology is directed to a system and method for application aware management and recovery of link failures resulting from excessive errors observed on the link. One aspect of the proposed technology is based on identification of link errors associated with application-specific data patterns traversing link. Other aspects involve corrective actions based on relocation or modification of specific application traffic to thereby alleviate the observed excessive link errors and prevent a link failure or shut down. Relocation may involve moving the source application to a different virtual machine/container/physical device or rerouting application traffic by updating relevant routing protocols. Modification may involve harmlessly changing payload data pattern to remove data-pattern dependent signal attenuation.
    Type: Application
    Filed: December 7, 2023
    Publication date: March 28, 2024
    Inventors: Chih-Tsung Huang, Wei-Jen Huang
  • Publication number: 20240105642
    Abstract: A method of manufacturing a package structure at least includes the following steps. An encapsulant laterally is formed to encapsulate the die and the plurality of through vias. A plurality of first connectors are formed to electrically connect to first surfaces of the plurality of through vias. A warpage control material is formed over the die, wherein the warpage control material is disposed to cover an entire surface of the die. A protection material is formed over the encapsulant and around the plurality of first connectors and the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Patent number: 11942464
    Abstract: In an embodiment, a method includes: aligning a first package component with a second package component, the first package component having a first region and a second region, the first region including a first conductive connector, the second region including a second conductive connector; performing a first laser shot on a first portion of a top surface of the first package component, the first laser shot reflowing the first conductive connector of the first region, the first portion of the top surface of the first package component completely overlapping the first region; and after performing the first laser shot, performing a second laser shot on a second portion of the top surface of the first package component, the second laser shot reflowing the second conductive connector of the second region, the second portion of the top surface of the first package component completely overlapping the second region.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Hsiu-Jen Lin, Wei-Yu Chen, Philip Yu-Shuan Chung, Chia-Shen Cheng, Kuei-Wei Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20240096630
    Abstract: Disclosed is a semiconductor fabrication method. The method includes forming a gate stack in an area previously occupied by a dummy gate structure; forming a first metal cap layer over the gate stack; forming a first dielectric cap layer over the first metal cap layer; selectively removing a portion of the gate stack and the first metal cap layer while leaving a sidewall portion of the first metal cap layer that extends along a sidewall of the first dielectric cap layer; forming a second metal cap layer over the gate stack and the first metal cap layer wherein a sidewall portion of the second metal cap layer extends further along a sidewall of the first dielectric cap layer; forming a second dielectric cap layer over the second metal cap layer; and flattening a top layer of the first dielectric cap layer and the second dielectric cap layer using planarization operations.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Jih-Sheng Yang, Shih-Chieh Chao, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Publication number: 20240097033
    Abstract: The present disclosure provides one embodiment of a method making semiconductor structure. The method includes forming a composite stress layer on a semiconductor substrate, wherein the forming of the composite stress layer includes forming a first stress layer of a dielectric material with a first compressive stress and forming a second stress layer of the dielectric material with a second compressive stress on the first stress layer, the second compressive stress being greater than the first compressive stress; and patterning the semiconductor substrate to form fin active regions using the composite stress layer as an etch mask.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Wei-Jen LAI, Yen-Ming CHEN, Tsung-Lin LEE
  • Publication number: 20240094498
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 21, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Patent number: 11935855
    Abstract: An electronic package structure and a method for manufacturing the same are provided. The electronic package structure includes a first electronic component, a second electronic component, an interconnection element, an insulation layer, and an encapsulant. The second electronic component is disposed adjacent to the first electronic component. The interconnection element is disposed between the first electronic component and the second electronic component. The insulation layer is disposed between the first electronic component and the second electronic component and has a side surface and a top surface connecting to the side surface. The encapsulant surrounds the interconnection element and at least partially covers the top surface of the insulation layer and has an extended portion in contact with the side surface of the insulation layer.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: March 19, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wei-Jen Wang, Yi Dao Wang, Tung Yao Lin
  • Publication number: 20240084483
    Abstract: A liquid color masterbatch composition for fabricating a colored fiber includes 5 parts by weight to 45 parts by weight of a colorant, 40 parts by weight to 94 parts by weight of a carrier, and 1 part by weight to 15 parts by weight of a lubricant, in which a chemical structure of the lubricant includes a carbonyl group and an amine group.
    Type: Application
    Filed: February 6, 2023
    Publication date: March 14, 2024
    Inventors: Rih-Sheng CHIANG, Wei-Jen LAI, Huang-Chin HUNG
  • Publication number: 20240088062
    Abstract: A package structure includes a die, an encapsulant laterally encapsulating the die, a warpage control material disposed over the die, and a protection material disposed over the encapsulant and around the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 23, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Publication number: 20240088026
    Abstract: A semiconductor device according to embodiments of the present disclosure includes a first die including a first bonding layer and a second die including a second hybrid bonding layer. The first bonding layer includes a first dielectric layer and a first metal coil embedded in the first dielectric layer. The second bonding layer includes a second dielectric layer and a second metal coil embedded in the second dielectric layer. The second hybrid bonding layer is bonded to the first hybrid bonding layer such that the first dielectric layer is bonded to the second dielectric layer and the first metal coil is bonded to the second metal coil.
    Type: Application
    Filed: January 17, 2023
    Publication date: March 14, 2024
    Inventors: Yi Ching Ong, Wei-Cheng Wu, Chien Hung Liu, Harry-Haklay Chuang, Yu-Sheng Chen, Yu-Jen Wang, Kuo-Ching Huang