Patents by Inventor Wen Cheng

Wen Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210200036
    Abstract: An electronic device is provided, including a frame, a backlight module, a working panel, and a tape. The frame includes a side wall and a back plate. The side wall includes an outer surface. The extension direction of the back plate is different from the extension direction of the side wall. The backlight module is disposed on the back plate. The working panel and the back plate are disposed on the opposite sides of the backlight module. The tape is in contact with at least a portion of the outer surface and the working panel.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 1, 2021
    Inventors: Wen-Cheng HUANG, Ting-Sheng CHEN, Chia-Chun YANG, Chin-Cheng KUO
  • Patent number: 11051109
    Abstract: A MEMS microphone includes a substrate having an opening, a first diaphragm, a first backplate, a second diaphragm, and a second backplate. The first diaphragm faces the opening in the substrate. The first backplate includes multiple accommodating-openings and it is spaced apart from the first diaphragm. The second diaphragm joints the first diaphragm together at multiple locations by pillars passing through the accommodating-openings in the first backplate. The first backplate is located between the first diaphragm and the second diaphragm. The second backplate includes at least one vent hole and it is spaced apart from the second diaphragm. The second diaphragm is located between the first backplate and the second backplate.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: June 29, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Wen-Tuan Lo
  • Publication number: 20210188627
    Abstract: Various embodiments of the present disclosure are directed towards a method for manufacturing a microelectromechanical systems (MEMS) device. The method includes forming a particle filter layer over a carrier substrate. The particle filter layer is patterned while the particle filter layer is disposed on the carrier substrate to define a particle filter in the particle filter layer. A MEMS substrate is bonded to the carrier substrate. A MEMS structure is formed over the MEMS substrate.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Wen Cheng Kuo
  • Publication number: 20210194354
    Abstract: A power supply apparatus includes a rectifier unit, a power factor correction circuit, and a control unit. The control unit correspondingly provides a reference voltage according to an amplitude of an input power source. When a voltage signal corresponding to an inductance current of an inductor of the power factor correction circuit is higher than the reference voltage, the control unit controls an energy release switch of the power factor correction circuit to be repeatedly switched on/off, and when the voltage signal is lower than the reference voltage, the control unit controls the energy release switch to be turned off.
    Type: Application
    Filed: March 11, 2020
    Publication date: June 24, 2021
    Inventors: Cheng-Chang HSIAO, Wen-Cheng LU, Yung-Hung HSIAO
  • Publication number: 20210190292
    Abstract: An optical element includes a bottom surface, a total reflection surface above the bottom surface, a recess recessed from the bottom surface toward the total reflection surface and first and second light exit surfaces. The optical element has a central axis perpendicular to the bottom surface. The total reflection surface has a peripheral boundary away from the central axis. The first light exit surface is connected to the peripheral boundary of the total reflection surface and extends toward the bottom surface away from the central axis. The second light exit surface is connected to the first light exit surface, extends away from the central axis, and is connected to the bottom surface. Each of the first and second light exit surfaces is consisted of at least one linear sub-refractive surface. Each linear sub-refractive surface is a straight line in any cross section passing through the central axis.
    Type: Application
    Filed: September 9, 2020
    Publication date: June 24, 2021
    Inventor: Hsu-Wen CHENG
  • Patent number: 11043593
    Abstract: A semiconductor device includes a Fin FET device. The Fin FET device includes a first fin structure extending in a first direction and protruding from an isolation insulating layer, a first gate stack including a first gate electrode layer and a first gate dielectric layer, covering a portion of the first fin structure and extending in a second direction perpendicular to the first direction, and a first source and a first drain, each including a first stressor layer disposed over the first fin structure. The first fin structure and the isolation insulating layer are disposed over a substrate. A height Ha of an interface between the first fin structure and the first stressor layer measured from the substrate is greater than a height Hb of a lowest height of the isolation insulating layer measured from the substrate.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 22, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Bo-Feng Young
  • Patent number: 11040870
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: June 22, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Patent number: 11041614
    Abstract: A lighting device includes a wavelength conversion unit, a driving unit, and a light source. The wavelength conversion unit includes a main body and a fluorescent powder layer. The main body has a cylindrical outer surface. The fluorescent powder layer is disposed on the cylindrical outer surface. The driving unit is configured to drive the wavelength conversion unit to rotate around an axis. The cylindrical outer surface surrounds the axis. The light source is configured to emit light toward the fluorescent powder layer.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: June 22, 2021
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Jih-Chi Li, Wen-Cheng Huang
  • Publication number: 20210184766
    Abstract: A data transmission system is provided in the invention. The data transmission system includes a transmitting device and a receiving device. The transmitting device encodes data into a color pattern, and displays the color pattern. The receiving device extracts the color pattern and decodes the color pattern to obtain the data.
    Type: Application
    Filed: May 29, 2020
    Publication date: June 17, 2021
    Inventors: Yen-Shuo HUANG, Chih-Wen HUANG, Wen-Cheng HSU, Chao-Kuang YANG, Ling-Fan TSAO, Chueh-Pin KO, Chih-Chiang CHEN, Tai JU, Yu-Shan RUAN
  • Publication number: 20210185110
    Abstract: An electronic apparatus and a data transmission method thereof are provided. The data transmission method is adapted to the electronic apparatus including a touch screen, and the data transmission method includes the following steps. An image frame is displayed through the touch screen. A connection with another electronic apparatus placed on the touch screen is established. Position information of said another electronic apparatus on the touch screen is detected through the touch screen, to capture a partial frame from the image frame according to the position information of said another electronic apparatus. Feature information of data to be transmitted is obtained from the partial frame. The data to be transmitted is sent to said another electronic apparatus via the connection according to the feature information.
    Type: Application
    Filed: July 21, 2020
    Publication date: June 17, 2021
    Applicant: Acer Incorporated
    Inventors: Yen-Shuo Huang, Chih-Wen Huang, Wen-Cheng Hsu, Chao-Kuang Yang, Ling-Fan Tsao, Chueh-Pin Ko, Chih-Chiang Chen, Tai Ju, Yu-Shan Ruan, Yu-Chieh Huang
  • Publication number: 20210179419
    Abstract: A micro-electro mechanical system (MEMS) device includes a MEMS substrate, at least one movable element laterally confined within a matrix layer that overlies the MEMS substrate, and a cap substrate bonded to the matrix layer through bonding material portions. A first movable element selected from the at least one movable element is located inside a first chamber that is laterally bounded by the matrix layer and vertically bounded by a first capping surface that overlies the first movable element. The first capping surface includes an array of downward-protruding bumps including respective portions of a dielectric material layer. Each of the downward-protruding bumps has a vertical cross-sectional profile of an inverted hillock. The MEMS device can include, for example, an accelerometer.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Inventors: Chun-wen CHENG, Chi-Hang CHIN, Kuei-Sung CHANG
  • Patent number: 11037885
    Abstract: Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yu Chien, Chien-Hsien Tseng, Dun-Nian Yaung, Nai-Wen Cheng, Pao-Tung Chen, Yi-Shin Chu, Yu-Yang Shen
  • Patent number: 11031286
    Abstract: Generally, examples are provided relating to conductive features that include a barrier layer, and to methods thereof. In an embodiment, a metal layer is deposited in an opening through a dielectric layer(s) to a source/drain region. The metal layer is along the source/drain region and along a sidewall of the dielectric layer(s) that at least partially defines the opening. The metal layer is nitrided, which includes performing a multiple plasma process that includes at least one directional-dependent plasma process. A portion of the metal layer remains un-nitrided by the multiple plasma process. A silicide region is formed, which includes reacting the un-nitrided portion of the metal layer with a portion of the source/drain region. A conductive material is disposed in the opening on the nitrided portions of the metal layer.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yip Loh, Chih-Wei Chang, Hong-Mao Lee, Chun-Hsien Huang, Yu-Ming Huang, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Yu-Kai Chen, Yu-Wen Cheng
  • Patent number: 11027310
    Abstract: The present disclosure relates to a method of depositing a fluid onto a substrate. In some embodiments, the method may be performed by mounting a substrate to a micro-fluidic probe card, so that the substrate abuts a cavity within the micro-fluidic probe card that is in communication with a fluid inlet and a fluid outlet. A first fluidic chemical is selectively introduced into the cavity via the fluid inlet of the micro-fluidic probe card.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Yi-Shao Liu, Fei-Lung Lai, Shang-Ying Tsai
  • Publication number: 20210163945
    Abstract: Provided herein is an aptamer specific to coagulation factor XIII (FXIII) and its uses thereof. Accordingly, the present aptamer is useful as a bio-tool to label thrombi, and/or as a targeting molecule to deliver drugs to thrombotic area. Therefore, the present disclosure also pertains to methods for treating diseases associated with FXIII, such as thrombosis.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Applicant: Chang Gung University
    Inventors: Yunn-Hwa MA, Ching-Ping TSENG, Kai-Wen CHENG
  • Patent number: 11021603
    Abstract: A white polyester film with a specific weight of 0.6-1.2 has a three-layered structure containing two outer layers (A) having a combined thickness taking up 2% to 30% of an overall thickness of the film and a middle layer (B), and having air-bubble cells in both the outer layers (A) and the middle layer (B). The outer layers (A) are formed from a polyester resin and inorganic particles. The middle layer (B) is formed of a polyester resin, modified polypropylene resin having a heat distortion temperature above 120° C. and a melt flow index (MI) of 0.2-1 g/10 minutes (at 230° C., with a load of 2.16 kg) via crosslinking with 0.1-3 wt % of peroxide with respect to the weight of the polypropylene resin, and inorganic particles.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: June 1, 2021
    Assignee: NAN YA PLASTICS CORPORATION
    Inventors: Te-Chao Liao, Wen-Cheng Yang, Chun-Che Tsao, Chia-Yen Hsiao, Chih-Feng Wang
  • Publication number: 20210159275
    Abstract: A resistive random access memory (RRAM) device and a manufacturing method are provided. The RRAM device includes bottom electrodes, a resistance switching layer, insulating patterns, a channel layer and top electrodes. The resistance switching layer blanketly covers the bottom electrodes. The insulating patterns are disposed on the resistance layer and located in corresponding to locations of the bottom electrodes. The channel layer conformally covers the resistance switching layer and the insulating patterns. The channel layer has a plurality of channel regions. The channel regions are located on the resistance switching layer, and cover sidewalls of the insulating patterns. The top electrodes respectively cover at least two of the channel regions, and respectively located in corresponding to one of the insulating patterns, such that the at least two of the channel regions are located between one of the bottom electrodes and one of the top electrodes.
    Type: Application
    Filed: November 19, 2020
    Publication date: May 27, 2021
    Applicant: Winbond Electronics Corp.
    Inventors: Chia-Wen Cheng, Ping-Kun Wang, Yi-Hsiu Chen, He-Hsuan Chao
  • Patent number: 11018259
    Abstract: A semiconductor device includes a substrate, at least one source drain feature, a gate structure, and at least one gate spacer. The source/drain feature is present at least partially in the substrate. The gate structure is present on the substrate. The gate spacer is present on at least one sidewall of the gate structure. At least a bottom portion of the gate spacer has a plurality of dopants therein.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yang Lo, Tung-Wen Cheng, Chia-Ling Chan, Mu-Tsang Lin
  • Patent number: D920967
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 1, 2021
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Shu-Hsien Chu, Yu-Wen Cheng, Ming-Chung Liu
  • Patent number: D923618
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 29, 2021
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Yu-Wen Cheng, Wang-Hung Yeh, Chun-Wen Wang