Patents by Inventor Wen-Yi Lin
Wen-Yi Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250118690Abstract: A semiconductor package includes: a die having a conductive pad at a first side of the die; and a redistribution structure over the first side of the die and electrically coupled to the die. The redistribution structure includes: a first dielectric layer including a first dielectric material; a first via in the first dielectric layer, where the first via is electrically coupled to the conductive pad of the die; and a first dielectric structure embedded in the first dielectric layer, where the first dielectric structure includes a second dielectric material different from the first dielectric material, where the first dielectric structure laterally surrounds the first via and contacts sidewalls of the first via.Type: ApplicationFiled: October 6, 2023Publication date: April 10, 2025Inventors: Wen-Yi Lin, Kan-Ju Yang, Kai-Cheng Chen, Chien-Li Kuo, Chien-Chen Li
-
Publication number: 20250105163Abstract: A semiconductor chiplet device includes a first die, a second die, a decoupling circuit and an interposer. The interposer includes a plurality of power traces and a plurality of ground traces. The first die and the second die are arranged on a first side of the interposer according to a configuration direction, and are coupled to the power traces and the ground traces. The decoupling circuit is arranged on a second side of the interposer, and is coupled to the power traces and the ground traces. The power traces and the ground traces are staggered with each other, and an extending direction of the ground traces and the power traces is the same as the configuration direction.Type: ApplicationFiled: March 20, 2024Publication date: March 27, 2025Inventors: Liang-Kai CHEN, Chih-Chiang HUNG, Wen-Yi JIAN, Yuan-Hung LIN, Sheng-Fan YANG
-
Publication number: 20250087466Abstract: The present disclosure relates to a processing apparatus and a processing method, and the processing apparatus includes a chamber, a wafer carrier, at least one air inlet and at least one electrode, wherein the wafer carrier is extended into the chamber, the gas inlet is arranged around the chamber, and the electrode is disposed on the chamber.Type: ApplicationFiled: October 19, 2023Publication date: March 13, 2025Applicant: United Semiconductor (Xiamen) Co., Ltd.Inventors: Ching-Shu Lo, Yan Cai, Tsung Che Lin, Wen Yi Tan
-
Patent number: 12247831Abstract: A method of inspecting flatness of substrate is provided and includes providing a substrate. N first inspecting points are selected from the surface of the substrate along a first straight line, where the coordinate of the i-th first inspecting point is (Xi,Yi,Zi). By using a formula “ D = ? i = 1 N - 1 ? ( X i + 1 - X i ) 2 + ( Y i + 1 - Y i ) 2 + ( Z i + 1 - Z i ) 2 ” , a first measurement length D is calculated. By using a formula “F=(D?S)/S”, a first flatness index F is calculated. S is the horizontal distance between 1st first inspecting point and N-th first inspecting point. When the first flatness index F is larger than a first threshold, the substrate is determined to be unqualified.Type: GrantFiled: March 25, 2024Date of Patent: March 11, 2025Assignee: DARWIN PRECISIONS CORPORATIONInventors: Chin-Wang Hsu, Wen-Yi Lin
-
Publication number: 20250081511Abstract: Field effect transistor (FET) devices having a heterogeneous/segmented channel region and methods for fabricating the same are provided. In one example, a fin-like field effect transistor (FinFET) device includes a substrate, a fin structure disposed on the substrate, a segmented channel region formed in the fin structure, two source/drain (S/D) regions separated by the segmented channel region, and a gate structure wrapping around the segmented channel region. The segmented channel region further includes multiple channel segments sequentially arranged in the segmented channel region, and the multiple channel segments include a first channel segment and a second channel segment. The first channel segment includes a first channel barrier material dispersed therein and has a first energy barrier, and the first energy barrier is at least 0.1 electron volts (eV) in a carrier flow path between the two S/D regions when the FinFET device is not activated for operation.Type: ApplicationFiled: August 30, 2023Publication date: March 6, 2025Inventors: Wen-Yi Lin, Shi-Sheng Hu, Chao-Chi Chen
-
Patent number: 12229590Abstract: A content channel generation device comprises a resource unit assignment circuit, for assigning scheduled station(s) as node(s) of a full binary tree according to a search algorithm; a node computing circuit, for determining first node connection information of the full binary tree, and to determine second node connection information of a smallest full binary tree according to a smallest binary tree algorithm and the first node connection information; a load balance circuit, for determining user field numbers corresponding to content channels according to a load balance function and the second node connection information; a user field generation circuit, for generating a traversal result of the smallest full binary tree according to a traversal algorithm and the second node connection information, and for generating user fields corresponding to the content channels according to the traversal result, to generate the content channels.Type: GrantFiled: March 25, 2021Date of Patent: February 18, 2025Assignee: Realtek Semiconductor Corp.Inventors: Jhe-Yi Lin, Chun-Kai Tseng, Wen-Yung Lee, Shau-Yu Cheng
-
Patent number: 12222253Abstract: A medicament delivery device development evaluation system is presented having a dummy medicament delivery device comprising at least one force sensor configured to detect an external force applied to the dummy medicament delivery device, processing circuitry configured to receive force measurements from the force sensor, and a storage medium configured to store the force measurements received by the processing circuitry.Type: GrantFiled: February 13, 2020Date of Patent: February 11, 2025Assignee: SHL MEDICAL AGInventors: Chun Chang, Chia Cheng Lin, Sheng-wei Lin, Hsueh-Yi Chen, Yiju Chen, Wen-Sheng Chien
-
Publication number: 20250015167Abstract: A method of fabricating a semiconductor device includes providing a first fin extending from a substrate. In some embodiments, the method further includes forming a first gate stack over the first fin. In various examples, the method further includes forming a first doped layer along a surface of the first fin including beneath the first gate stack. In some cases, a first dopant species of the first doped layer is of a same polarity as a second dopant species of a source/drain feature of the semiconductor device.Type: ApplicationFiled: July 7, 2023Publication date: January 9, 2025Inventors: Wen-Yi LIN, Shi-Sheng HU, Chung-Hao CHU, Chao-Chi CHEN
-
Publication number: 20240421115Abstract: An embodiment semiconductor package includes a package substrate, a first semiconductor die electrically and mechanically coupled to the package substrate, a second semiconductor die electrically and mechanically coupled to the package substrate, a non-conductive film formed between the first semiconductor die and the package substrate, and a capillary underfill material formed between the second semiconductor die and the package substrate. The non-conductive film may be formed in a first region over a surface of the package substrate and the capillary underfill material may be formed over a second region of the surface of the package substrate, such that the second region surrounds the first region in a plan view. The semiconductor package may further include a multi-die frame partially surrounding the first semiconductor die and the second semiconductor die such that a multi-die chip is formed that includes the first semiconductor die, the second semiconductor die, and the multi-die frame.Type: ApplicationFiled: June 15, 2023Publication date: December 19, 2024Inventors: Wen-Yi Lin, Kai-Cheng Chen, Chien-Li Kuo, Chien-Chen Li
-
Publication number: 20240379488Abstract: A semiconductor package is provided, which includes a first chip disposed over a first package substrate, a molding compound surrounding the first chip, a first thermal interface material disposed over the first chip and the molding compound, a heat spreader disposed over the thermal interface material, and a second thermal interface material disposed over the heat spreader. The first thermal interface material and the second thermal interface material have an identical width.Type: ApplicationFiled: July 25, 2024Publication date: November 14, 2024Inventors: Chin-Hua WANG, Po-Yao LIN, Feng-Cheng HSU, Shin-Puu JENG, Wen-Yi LIN, Shu-Shen YEH
-
Publication number: 20240379475Abstract: A package structure is provided. The package structure includes a substrate and a ground structure laterally surrounded by the substrate. The package structure also includes a chip-containing structure over the substrate and a protective lid attached to the substrate through a first adhesive element and a second adhesive element. The ground structure is electrically connected to the protective lid through the first adhesive element. The second adhesive element is closer to a corner edge of the substrate than the first adhesive element, and a portion of the second adhesive element is between the first adhesive element and the chip-containing structure.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wen-Yi LIN, Kuang-Chun LEE, Chien-Chen LI, Chen-Shien CHEN
-
Patent number: 12119276Abstract: A package structure is provided. The package structure includes a substrate and a chip-containing structure over the substrate. The package structure also includes a protective lid attached to the substrate through a first adhesive element and a second adhesive element. The first adhesive element has a first electrical resistivity, and the second adhesive element has a second electrical resistivity. The second electrical resistivity is greater than the first electrical resistivity. The second adhesive element is closer to a corner edge of the substrate than the first adhesive element, and a portion of the second adhesive element is between the first adhesive element and the chip-containing structure.Type: GrantFiled: July 27, 2023Date of Patent: October 15, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wen-Yi Lin, Kuang-Chun Lee, Chien-Chen Li, Chen-Shien Chen
-
Publication number: 20240332212Abstract: A package structure includes a package substrate, a semiconductor die module on the package substrate, a ring structure on the package substrate adjacent to the semiconductor die module, and a hybrid adhesive having a first modulus and a second modulus less than the first modulus and attaching the ring structure to the package substrate.Type: ApplicationFiled: March 28, 2023Publication date: October 3, 2024Inventors: Wen-Yi Lin, Yi-Che Chiang, Chien-Chen Li, Chien-Li Kuo, Kuo-Chio Liu
-
Publication number: 20240302410Abstract: A probe head structure is provided. The probe head structure includes a flexible substrate having a top surface and a bottom surface. The probe head structure includes a first probe pillar passing through the flexible substrate. The probe head structure includes a redistribution structure on the top surface of the flexible substrate and the first probe pillar. The probe head structure includes a wiring substrate over the redistribution structure. The probe head structure includes a first conductive bump connected between the wiring substrate and the redistribution structure.Type: ApplicationFiled: May 21, 2024Publication date: September 12, 2024Inventors: Wen-Yi LIN, Hao CHEN, Chuan-Hsiang SUN, Mill-Jer WANG, Chien-Chen LI, Chen-Shien CHEN
-
Publication number: 20240290683Abstract: An embodiment semiconductor package structure may include a package substrate, a semiconductor die coupled to the package substrate, and a package lid attached to the package substrate and covering the semiconductor die. The package lid may include a top portion having a spatially varying thermal conductivity that is greater in a first region than in a second region. The first region may include a multi-layer structure including a metal/diamond composite material supported by a copper layer. The metal/diamond composite material may include a silver/diamond, copper/diamond, or aluminum/diamond material and may have a thermal conductivity that is within a range from 600 W/m·K to 900 W/m·K and a coefficient of thermal expansion that is in a second range from 5 ppm/° C. to 10 ppm/° C. The package lid may have an effective coefficient of thermal expansion that is in a range from 14.5 ppm/° C. to 17 ppm/° C.Type: ApplicationFiled: February 27, 2023Publication date: August 29, 2024Inventors: Wen-Yi LIN, Kuang-Chun LEE, Chien-Chen LI, Chien-Li KUO, Kuo-Chio LIU
-
Publication number: 20240230323Abstract: A method of inspecting flatness of substrate is provided and includes providing a substrate. N first inspecting points are selected from the surface of the substrate along a first straight line, where the coordinate of the i-th first inspecting point is (Xi,Yi,Zi). By using a formula “ D = ? i = 1 N - 1 ? ( X i + 1 - X i ) 2 + ( Y i + 1 - Y i ) 2 + ( Z i + 1 - Z i ) 2 ” , a first measurement length D is calculated. By using a formula “F=(D?S)/S”, a first flatness index F is calculated. S is the horizontal distance between 1st first inspecting point and N-th first inspecting point. When the first flatness index F is larger than a first threshold, the substrate is determined to be unqualified.Type: ApplicationFiled: March 25, 2024Publication date: July 11, 2024Inventors: Chin-Wang HSU, Wen-Yi LIN
-
Patent number: 12024780Abstract: A method of preparing a metal mask substrate includes providing a metal substrate. Next, a gloss is measured and obtained from the surface of the metal substrate. Next, the gloss is determined whether to be within a predetermined range. When the gloss is determined within the predetermined range, a photolithography process is performed to the metal substrate, where the predetermined range is between 90 GU and 400 GU.Type: GrantFiled: November 11, 2021Date of Patent: July 2, 2024Assignee: DARWIN PRECISIONS CORPORATIONInventors: Chi-Wei Lin, Wen-Yi Lin
-
Patent number: 12019097Abstract: A probe head structure is provided. The probe head structure includes a flexible substrate having a top surface and a bottom surface. The probe head structure includes a first probe pillar passing through the flexible substrate. The first probe pillar has a first protruding portion protruding from the bottom surface. The probe head structure includes a redistribution structure on the top surface of the flexible substrate and the first probe pillar. The redistribution structure is in direct contact with the flexible substrate and the first probe pillar. The redistribution structure includes a dielectric structure and a wiring structure in the dielectric structure. The wiring structure is electrically connected to the first probe pillar. The probe head structure includes a wiring substrate over the redistribution structure. The probe head structure includes a first conductive bump connected between the wiring substrate and the redistribution structure.Type: GrantFiled: August 30, 2021Date of Patent: June 25, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wen-Yi Lin, Hao Chen, Chuan-Hsiang Sun, Mill-Jer Wang, Chien-Chen Li, Chen-Shien Chen
-
Patent number: 12000693Abstract: A method of inspecting flatness of substrate is provided and includes providing a substrate. N first inspecting points are selected from the surface of the substrate along a first straight line, where the coordinate of the i-th first inspecting point is (Xi,Yi,Zi). By using a formula “D=?i=1N?1?{square root over ((Xi+1?Xi)2+(Yi+1?Yi)2+(Zi+1?Zi)2)}”, a first measurement length D is calculated. By using a formula “F=(D?S)/S”, a first flatness index F is calculated. S is the horizontal distance between 1st first inspecting point and N-th first inspecting point. When the first flatness index F is larger than a first threshold, the substrate is determined to be unqualified.Type: GrantFiled: March 8, 2022Date of Patent: June 4, 2024Assignee: DARWIN PRECISIONS CORPORATIONInventors: Chin-Wang Hsu, Wen-Yi Lin
-
Patent number: 11980043Abstract: A metal mask and an inspecting method thereof are provided for improving quality standard detection. The metal mask has a first and a second long side and plural pattern regions. The method includes the followings steps Based on the pattern regions adjacent to the first and second long sides, a first and a second reference straight line adjacent to the first and second long sides respectively are defined. Then, a first maximum offset length between the pattern regions and the first reference straight line is measured. A second maximum offset length between the pattern regions and the second reference straight line is measured. When a difference between the first and second maximum offset lengths is less than or equal to 20 ?m, the metal mask is determined to meet an inspecting standard.Type: GrantFiled: November 11, 2021Date of Patent: May 7, 2024Assignee: DARWIN PRECISIONS CORPORATIONInventors: Yun-Pei Yang, Mei-Lun Li, Wen-Yi Lin